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A rigorous proof for the existence of bipolaronic states is given for the adiabatic 
Holstein model for any lattice at any dimension, periodic or not, and for an 
arbitrary band filling, provided that the electron-phonon coupling (in dimen- 
sionless units) is large enough. The existence of mixed polaronic-bipolaronic 
states is also proven, but for larger electron phonon coupling. These states 
consist of arbitrary distributions of bipolarons (or of bipolarons and polarons) 
localized in real space which can be simply labeled by pseudospin configurations 
as for a lattice gas model. The theory not only applies to periodic crystals, but 
also to quasicrystals, amorphous structures, polymer network, etc. 

When these bipolaronic and mixed polaronic-bipolaronic states exist, it is 
proven that: (1) These bipolaronic (and mixed potaronic-bipolaronic) states 
exhibit a nonzero phonon gap with a nonvanishing lower bound and an 
electronic gap at the Fermi energy. (2) These structures are insulating. The 
perturbation generated by any local change in the bipolaronic or polaronic 
distribution or by any charged impurity or defect decays exponentially at long 
distance. (3) These bipolaronic (and mixed polaronic-bipolaronic) states persist 
for any uniform magnetic field. (4) For large enough electron-phonon coupling, 
the ground state of the extended adiabatic Holstein model is a bipolaronic state 
when there is no uniform magnetic field or when it is small enough. It becomes 
a mixed polaronic-bipolaronic state for large enough magnetic field (note that 
the mixed polaronic-bipolaronic states are magnetic). 

In one-dimensional models, the ground state is an incommensurate (or 
commensurate) charge density wave (CDW) as predicted by Peierls (this result 
is not rigorous, but has been confirmed numerically). It is proven that the 
ground state becomes a "bipolaronic charge density wave" (BCDW) at large 
enough electron-phonon coupling. The existence of a transition by breaking 
of analyticity (TBA), which was numerically observed as a function of the 
electron-phonon coupling, is then confirmed. In that case, the shape of the effec- 
tive bipolaron can be numerically calculated. It is observed that its size diverges 
at the TBA. The physical properties of BCDWs are rather different from those 
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predicted by standard charge density wave theory. Bipolaronic charge density 
waves can also exist in models which are not only low-dimensional, but 
purely two- or three-dimensional. 

The technique for proving these theorems is an application of the concept 
of anti-integrability initially developed for Hamiltonian dynamical systems. It 
consists in proving that the eigenstates of the (trivial) Hamiltonian (called anti- 
integrable) obtained by canceling all electronic and lattice kinetic terms survive 
as a uniformly continuous function of the electronic kinetic energy terms in the 
Hamiltonian up to a certain threshold. 

KEY WORDS: Chaos; anti-integrability; bipolaron; polaron; charge density 
wave; breaking of analyticity. 

1. I N T R O D U C T I O N  

This paper follows the work of refs. 1 and 2, where the concept of anti- 
integrability and some of its applications were first described on the 
Frenke l -Kontorowa (FK)  model and the associated standard map as 
an example. Technically, the present work consists in the application of 
this concept of anti-integrability to a coupled etectron-phonon model. 
We choose as a first example the Holstein model. Physically, it brings 
new information concerning the effect of the electron-phonon coupling 
which leads to potentially important  consequences for understanding real 
materials. 

The reader who is only interested in the physical consequences of this 
work could focus mostly on this introduction and on the end of the conclu- 
sion, Section 5. He or she could also refer to ref. 6, where much of the 
physical ideas about  bipolaronic structures were presented empirically. The 
reader who is interested in the mathematical techniques should refer first to 
refs. 1 and 2, where the basic ideas used here were applied to the FK 
model. 

1.1. Bipolaron, Polarons, and Ant i - ln tegrab i l i ty  

This paper is mainly devoted to the study of the "anti-integrable" limit 
of the adiabatic Holstein mode, which can be treated exactly in perturba- 
tions. The proof  for the existence of chaotic bipolaronic states is obtained 
in a nonvanishing region of the parameter  space. Within this approach, the 
effective bipolarons play a role similar to the effective discommensurations 
in the F K  models. (2) Polarons are also involved, but have no analog in the 
F K  model. As also noted in refs. 3-6, there are strong similarities between 
the properties of the ground state of 1D Peierls chains and of those of 
the 1D FK model. Although in the FK model the existence of chaotic 
metastable states at large coupling is intuitive for physicists, the mathe- 
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matical formulation of a rigorous proof was still missing in the literature. 
We proposed a proof (2) in this simple case with a strategy based on the 
fixed-point theorem of Banach (1921).2 The same strategy can be used here 
for the adiabatic Holstein model, although its implementation becomes 
more complex and the physical intuition much looser. Although the same 
method can be extended to many other adiabatic electron-phonon models 
or to mean-field models with electron-electron interactions, it is preferable 
in a first step to focus on the Holstein model, which is one of the simplest 
for electron-phonon coupled systems. 

The concept of the polaron was first introduced by Landau. (14) It is 
now well known that because of the electron-phonon coupling, a single 
electron in a lattice creates a lattice distortion and may localize in the self- 
consistent associated with this lattice distortion. This localization occurs 
in one-dimensional models at any nonvanishing electron-phonon coupling, 
but in two dimensions and more, this must exceed a certain critical value. 
The combination of an electron with its associated lattice distortion is 
called a polaron. When the electron-electron interaction is small enough, 
the localization of a pair of electrons with opposite spins in the same elec- 
tronic state is energetically more favorable, and then the system forms a 
bipolaron (for a standard review of problems of polarons and bipolarons 
see refs. 15 and 16). However, up to now, these polarons have been 
investigated only at low density. 

Here, our approach is somewhat different. It has been numerically 
observed (3-6) that for large enough electron-phonon coupling, one-dimen- 
sional Peierls systems could exhibit chaotic metastable states beyond the 
"'transition by breaking of analyticity" (TBA). These states were interpreted 
empirically as Fermi glasses due to the localization of the electrons into 
potential wells which are randomly distributed. These potential wells 
are generated self-consistently by the lattice deformation created by the 
electron density (self-trapping). The numerical observation of these Fermi 
glasses suggests that they are in fact glasses of bipolarons and thus that the 
concept of bipolaron (or of polaron) could remain valid for many-electron 
systems, provided that the electron-phonon coupling is large enough. 

Indeed, when there are many electrons in the system, the polarons (or 
the bipolarons) strongly overlap, so that it is not clear whether the concept 
of polaron or bipolaron remains well-defined. This paper answers the 
question for the adiabatic Holstein model (at any dimension) and with or 
without magnetic field, by proving that these chaotic many-bipolaron 
structures are generated by continuity from a limit ("anti-integrable") 
where their existence is trivial. In thus provides precise definitions for the 

2 For  the Banach fixed-point theorem see, e.g., ref. 8. 
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many-bipolaron states and, on the same footing, for the mixed polaron 
bipolaron states. For  the adiabatic Holstein model with an electron- 
phonon coupling larger than a given bound, it is proven that there is a 
one-to-one map between the whole set ~ of pseudospin configurations on 
the lattice {cr i = 0 or 1 } and a set of metastable configurations 5 ~' of the 
adiabatic Holstein model which are the bipolaronic states. The pseudospin 
configurations {ai} determine the location of the maxima of the electronic 
density of the bipolaron arrangement on the lattice. When az= 0 at site i, 
the electronic density is smaller than 1/2 and we say that no bipolaron is 
present around this site i. When a~= 1, the electronic density becomes 
larger than 1/2 and we say that a bipolaron is present at this site. The 
lattice distortion due to each bipolaron is not strictly localized on a single 
site, but extends over some distance around the occupied site. The impor- 
tant result coming from our theorem is that the bipolaronic configurations 
can be simply described by pseudospin configurations which represent 
symbolically their spatial distribution. 

Similarly, the mixed polaronic-bipolaronic configurations are 
described by pseudospin configurations {a~}, where cr~ now takes three 
possible values, 0, 1/2, and 1 instead of 0 and 1. When ai = 1 at site i, there 
is a bipolaron at site i. When ai = 0, there is no bipolaron and no polaron 
at site i. When a~ = 1/2, a polaron is present at site i. This polaron also 
extends over some distance around its site and exhibits a physical spin 
which is that of a single electron. However, since we consider here a model 
with no direct electron-electron interaction, the global energy of this state 
does not depend on this physical spin and then these mixed po la ron i~  
bipolaronic states are spin degenerate with a nonzero entropy. This 
spin degeneracy should be raised by an external magnetic field or by a 
direct electron-electron interaction, allowing the occurrence of magnetic 
structures. 

Our exact results imply for the adiabatic Holstein model at large 
enough electron-phonon coupling that the bipolarons or the polarons can be 
treated as individual particles localized in real space which can be added or 
subtracted locally and one by one to the whole structure. Let us warn the 
reader that this property does not mean that the wavefunctions of the 
electrons in the self-consistent lattice potential are localized. In fact, in our 
case, this property is meaningless because excitations in the electronic 
systems modify this self-consistent potential and therefore the electronic 
eigenstates. Let us consider, for example, a case where the pseudospin 
configuration {a~} is periodic; the resulting lattice distortion and the self- 
consistent lattice potential of the associated bipolaronic structure is also 
periodic and the electronic states are extended Bloch states. When the 
pseudospin configuration {a~} is random, the electronic states might be 
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localized. But in any case, the physical properties of the system remain the 
same: the bipolarons behave as localized particles. These bipolaronic states 
are always insulating at zero degrees kelvin with a finite gap for the 
electronic eigenenergies at the Fermi level (and also for the phonon excita- 
tions). We now make some remarks about the definition of an insulating 
state. 

1.2. Charge  De fec t ib i l i t y  and Insulat ing Sta tes  

According to very old and well-known experimental facts, an insulator 
can be defined by considering only electrostatic properties instead of trans- 
port properties as usual. The characteristic property which determines 
whether the system is insulating or conducting (or semiconducting) is the 
charge defectibility. An electric charge which is injected into an insulator at 
some point does not extend over the whole system, but remains localized 
in real space in the vicinity of the point where it has been injected: the 
system preserves inhomogeneous electrostatic charge distributions. In 
principle due to thermal agitation, this inhomogeneous distribution should 
relax after a finite time (relaxation time) which becomes strictly infinite 
only at 0 K. However, in practice, this lifetime can be so long that it 
can be already considered as infinite for "good insulators" at room 
temperature. By contrast, for conductors and semiconductors, a locally 
injected charge extends over the whole sample within a very short time 
even at 0 K. It is this property which allows the transport of electrons 
through the system (electric current). We can say in equivalent words that 
when a system is charge-defectible, the mobility of the localized charge 
carriers is either zero or is physically negligible (the charges are pinned to 
the lattice), while when it is charge-undefectible, the mobility of the charge 
carriers becomes high or is at least nonnegligible, which prevents them 
from remaining localized. This mobility could be found to be infinite in the 
simplest models. 

It clearly appears that the standard electronic band model for a 
periodic crystal always yields an undefectible system since the electronic 
excitations of the system, which correspond to extra electrons in the 
conduction band, are Bloch wave states and thus extend over the whole 
crystal. In fact, this band scheme allows one to discriminate only between 
conductors and semiconductors. For a semiconductor, the Fermi energy 
lies between two bands. At 0 K, applying a small electric field does not 
allow one to generate any electronic excitations, because of the non- 
vanishing electronic gap. Then, the conductivity of this semiconductor is 
strictly zero essentially because of the absence of any charge carriers. When 
electronic excitations which are mobile are created, for example, by thermal 
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activation, by photoexcitation, or by doping, such systems become con- 
ducting, unlike true insulators, where charged defects are not mobile. 

By contrast, for a conductor (metal), the Fermi energy lies inside an 
electronic band. At 0 K, a small electric field generates mobile electronic 
excitations because of the absence of an electronic gap at the Fermi energy, 
so that the system is a conductor at 0 K. However, in this ideal band 
model, the conductivity is infinite. For  obtaining a finite conductivity, it is 
necessary to involve additional effects which could be due either to the 
static potential of random impurities or lattice defects, to a direct electron 
electron interaction, or an electron-phonon coupling. It is well known that 
two of these effects could also lead to true insulating states (which are 
charge-defectible) by an Anderson localization of the electrons due to 
random impurities (or defects) or to a Mott  insulator transition due to the 
electron-electron interaction. It is thus interesting to complete this picture 
by proving (which will be done here) that a true insulating states (which 
is "charge-defectible") can be also generated when the electron-phonon 
interaction is sufficiently strong. 

It appears that the concept of charge defectibility which we propose 
for defining an insulator is analogous to the concept of phase defectibility 
for incommensurate structures introduced some years ago. (7) It is more 
general than but extends the concept of localization, which requires inde- 
pendent particles. The bipolaronic states which we found in the model 
studied here are by construction charge-defectible and thus explicitly fulfill 
this definition for an insulating state. At low temperature, the relevant 
excitations of the whole electron-phonon system are defects in the 
bipolaronic structure which cannot be described as single electronic excita- 
tions in the "conduction band." At larger temperature or with a magnetic 
field, the mixed polaronic-bipolaronic excited states may become relevant 
(if they exist, that is, for an electron-phonon coupling large enough). The 
transition between a charge-undefectible system and a charge-defectible 
system can be considered in some respect as a transition wave-corpuscle 
since in the first case, the electrons have to be considered as delocalized 
particles (waves) and in the second case as exponentially localized particles 
(corpuscles). 

Turning back to the properties of the bipolaronic states, it is proven 
that the ground state of the adiabatic Holstein model without magnetic 
field or with a small enough magnetic field is one of these metastable 
bipolaronic states, which of course corresponds to a particular nonchaotic 
ordering of the bipolarons. When the magnetic field is sufficiently large, the 
ground state becomes a mixed polaronic-bipolaronic state. In one dimen- 
sion, numerical calculations have shown that it corresponds to a periodic 
or a quasiperiodic sequence {ai} with wave vector 2kF (which depends on 
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the band filling). 13 6) This commensurate or incommensurate array of 
bipolarons just forms the charge density wave (CDW) expected from the 
theory of Peierls instabilities. The obtained structure does not exhibit any 
phonon mode with zero frequency (called the phason mode), but the 
low-lying excited states correspond to metastable configurations associated 
with pseudospin sequences {o-i}. They can be equivalently interpreted as 
localized defects or discommensurations. At the present stage we are 
unable to predict the ordering of the bipolaronic or mixed polaronic- 
bipolaronic configuration for the ground state at arbitrary band filling. 
Nevertheless, we can expect (mostly in models with several dimensions), a 
very righ variety of possible structures (commensurate, incommensurate, 
weakly periodic? etc.) with first- or second-order phase transitions and 
devil's staircases, which need to be explored. 

1.3. Outline 

This paper is organized in five sections. 
Following this present introductory section, Section 2 is devoted to 

definitions and notations. In Section 2.1, we define the Holstein model on 
a d-dimensional square lattice. In Section 2.2, the anti-integrable and 
adiabatic limits are defined. At the adiabatic limit, finding the eigenstates 
of the Holstein model is equivalent to extremalizing a variational form. In 
Section 2.3, we describe the extension of the Holstein model to arbitrary 
lattices, since the mathematical treatment of the next section can be applied 
identically to a periodic one. 

Section 3 describes the two main theorems of the paper and the essen- 
tial parts of their proofs. The parts which become too technical or tedious 
are given in Appendices A-C. Section 3.1 describes the bipolaronic and 
mixed polaronic states at the anti-integrable limit. The long Section 3.2 
describes the theory of perturbation for the bipolaronic states at the anti- 
integrable limit. It starts with the description of our strategy of proof. We 
define an operator St the fixed points of which are the bipolaronic states 
and apply our strategy by proving Lemma 1 and Proposition 1. The proof 
of Proposition 2 comes out from the results of Appendices A (polynomial 
approximations) and B. Then Theorem 1 for the persistence of the 
bipolaronic states close to the anti-integrable limit is given and proven. 
Section 3.3, extends this theory to situations where the electrons are in 
excited states. Theorem 2 then predicts the existence of mixed polaronic- 
bipolaronic states. Its proof is essentially based on the same ideas as that 
to Theorem 1. It is described in parallel to the initial proof of this 
Theorem 1 in Appendix C, where only the differences are pointed out. 
Theorem 3 states that the limits of these bipolaronic and polaronic states 
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are well defined when the size of the system diverges. However, the proof 
of this theorem is given later at the end of Section 4.3, after the properties 
of these states which are needed for establishing this theorem have been 
described and proved. 

Section 4 is devoted to the physical properties of the bipolaronic states 
and mixed polaronic bipolaronic states the existence of which is predicted 
by Theorems 1 and 2. In Section 4.1 we prove the existence of an electronic 
gap, and in Section 4.2 the existence of a phonon gap for all these states. 
Section4.3 proves that the linear response of these states to local 
perturbations decays exponentially as a function of the distance, which 
allows one to define a coherence length. In addition, we prove that the 
finite perturbation due to any local change in the polaronic and 
bipolaronic distribution also decays exponentially at large distance (note 
that this result is not a differential property, but is valid for nonvanishing 
perturbations). This result confirms that polarons and bipolarons can be 
treated physically as individual particles since their arrangement can 
be chosen arbitrarily. In Section 4.4 we show that a small amount of 
disorder on the electronic transfer integrals does not affect the existence 
Theorems 1 and 2, nor does a magnetic field, uniform or not, when only 
the orbital effects are taken into account. In addition, it is shown that the 
bounds for the existence of bipolaronic and mixed polaronic bipolaronic 
states can be improved by the presence of a magnetic field. Theorems 1 and 
2 still hold, but only for a uniform magnetic field, when the magnetic spin 
effects are taken into account. Finally, in Section 4.5 it is proven that for 
large enough electron-photon coupling, the ground states of the adiabatic 
Holstein model are either bipolaronic (without or with a small enough 
uniform magnetic field) or mixed polaronic-bipolaronic (for a large enough 
uniform magnetic field). 

Section 5 gathers comments and remarks about the previous results 
and their consequences and sets new questions to be studied in more detail 
in further works. In Section 5.1, assuming a perfect similitude between the 
FK model (where rigorous results are available) and the one-dimensional 
adiabatic Holstein model, the analysis of early numerical data yields the 
exact shape of a bipolaron. In Section 5.2 we discuss the conditions which 
are required for other models for extending the mathematical method used 
for the Holstein model. Next, it is noted in Section 5.3 that the perturba- 
tion theory is often only applicable to a subset of the "anti-integrable 
states" (pruning condition). An example is given. We show in Section 5.4 
with an example that there exist many other metastable states which are 
not obtained by perturbation of those obtained at the anti-integrable limit. 
We mention in Section 5.5, that there exist models without any well-defined 
anti-integrable limit and thus to which our theory does not apply in the 
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present form. Some of these models are "integrable" and have no anti- 
integrable limit. For others the question is open. In Section 5.6 we briefly 
mention, by introducing a Hubbard term as an example, that our theory 
can include a direct electron-electron interaction but within a mean-field 
description. In Section 5.7, we briefly recall some recent results partially 
published elsewhere concerning the validity of the adiabatic approximation. 
Corrections to this approximation are generally totally negligible for well- 
defined bipolaronic and polaronic structures. On contrary, the role of the 
anti-adiabatic terms becomes predominant when the size of the bipolarons 
(or polarons) diverges. Finally, we conclude with some discussions about 
the applications of this work to real compounds. Although the standard 
interpretation of CDW by the Peierls-Fr6hlich theory is found to be 
acceptable in the literature, we suggest that our approach could provide an 
alternative basis of a new interpretation not only for the main experimental 
facts, but also for many others which up to now have not received a 
consistent interpretation. 

2. THE d-DIMENSIONAL HOLSTEIN MODEL AND 
ITS EXTENSIONS 

2.1. Def in i t ions and Notat ions 

The standard Holstein model (17) consists of a system of electrons 
described within the tight-binding representation coupled to phonons on a 
d-dimensional square lattice. As for the Frenkel-Kontorowa model, this 
model naturally involves the period of the underlying lattice and thus the 
tight-binding representation which makes the space variable discrete 
appears to play a role similar to the Poincar6 representation of surfaces of 
section for continuous-time dynamical systems which makes the time 
variable discrete. Instead of describing immediately the adiabatic Holstein 
Hamiltonian which we will study here, it is useful to describe first the fully 
quantum Holstein model in order to make clear the physical approxima- 
tions and to identify the anti-integrable limit. It is the sum of three terms, 

H=H~,+ Hep+ H p (t) 

(i) H k is the Hamiltonian of a single band of noninteracting electrons 
in a tight-binding representation, 

H k = - - T  ~ cLcj, ~ (2a) 
<ZJ>,~ 

where T is the transfer integral between neighboring sites (i, j> on a 
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d-dimensional square lattice Z a and cr is the electron spin _+ 1/2 along the z 
direction denoted T or ~. Here c + and ci,,, are the standard anticommuting i, ff 
creation and annihilation fermions operators of an electron at site i e g a 
with spin a, respectively, for which we recall that the anticommutators 
fulfill 

C + , , { i ,a ,  Cj, a'}-'w'Ci+,aCj, a ' n V C j , ~ r ' C ; = ( ~ c r r  (2b) 

where ~3i, j = 0 for i :~ j and 8i, j = 1 for i = j, and {ci,., cj,.,) = {c + ,  cj+.,} = 0. 
This Hamiltonian is often written in its diagonal form in the reciprocal 
space representation as 

Ilk = ~ E(q) c+(q) c,,(q) (3a) 
q, a 

with 
d 

E(q) = - 2 T  ~ cos q~ (3b) 

For a d-cubic finite system C c Z u with N a sites and standard periodic 
boundary conditions, q = {q~ = 2ztpJN}, ~ = 1, 2 ..... d, where p~ are 
integers fulfilling - N / 2  < p~ <~ N/2. The sum in (3a) then becomes finite, 
with new fermion in (3a), which are 

ca(q) =N-a~2 2 Cn, o eiq" (4a) 
n ~ C  

c+(q)-= [ e ~ ( q ) ] * = N  -a/2 ~ c + e- ,q.  -?l, tT- 
n ~ C  

(4b) 

The ground state [G) of this free-electron Hamiltonian Hk is given by 
the Fermi rule. The fermion states q, cr are occupied, provided that E(q) is 
smaller than EF, the Fermi energy. This is chosen in order that the number 
of occupied states, which is the number of electrons, is fixed to a given 
number 0 < P < 2N d. In other words, 

[ G ) =  I~ C~Cq+t[ 0 )  (4c) 
Eq <~ E F 

where I O ) is the vacuum. 

(ii) Hp is the Hamiltonian of quantum phonons corresponding to a 
dispersionless optical branch (constant-frequency Einstein oscillators) 

H p = ~ h ~ o o ( a [ a i + � 8 9  (5a) 
i 
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where a,. + and ai are the standard commuting creation and annihilation 
boson operators of phonons at site i, respectively. We recall the standard 
boson commutation rule 

[a,, a S ] = a f t  + - a f  a, = 3i.j (5b) 

This Hamiltonian has a trivial ground state, which is the vacuum (no 
boson or phonon). 

(iii) These two Hamiltonians Hk and Hp are coupled by the on-site 
electron-phonon interaction Hep with constant g, described by the 
Hamiltonian 

Hep = g ~ n,(a/+ + ai) (6a) 
i 

wheile the electronic density operator at site i is 

n i = c ;  CiT q- ci+~ ci, t (6b) 

Of course, Hep does not commute with Hk and Hp. In previous 
papers,(6,9 12~ we introduced two dimensionless independent parameters 

h ( o  o 
7=--~ - (7a) 

measuring the "quantum character" of the phonons, and 

2g 
( he)o T) '/2 (7b) 

which is the reduced electron-phonon coupling constant in the classical 
phonon limit. (Thus, unlike the constant 7, this constant k has to be 
insensitive to the phonon energy quanta he)o, which implies that k does not 
depend on any isotopic substitution.) 

In this paper, it turns out to be more convenient to introduce different 
notations. We set 

hco o x/7 a.) (8a) 
u " = ~ - g  (a~+ + a n ) =  2k ( a + +  

as the atomic position operator (in appropriate units) and its conjugate 
momentum 

2g ik 
Pn = ~ o  i(a~+ - an) = ~ (a~ + - an) (8b) 
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with commutator 

[lln, Pro] -~ i(~m,n (8C) 

Then, the initial Hamiltonian H can be represented in units of energy 

8g 2 
Eo = he)o (9a) 

and becomes the sum of three terms, 

where 

/~ =--=H HA~ + tHK + flH o (9b) 
Eo 

1 
HA1 = ~i ~ (il2 -t- niu,) !'9c) 

1 
HK-- 2 2 c+ cj,~ (9d) 

(i,j>,a 

H o = ~ i  p2 (9e) 

The amplitudes of the perturbations, which are the electronic and 
lattice kinetic energy terms, are given respectively by 

and 

The) o 1 
t = - -4g 2 - k2 > 0 (10a) 

f l = 4 \  2g J - 4  \kTJ 
(10b) 

2.2. The Anti- lntegrable and the Adiabatic Limit 

In the limit where t and fl are both zero, this Hamiltonian becomes 
essentially the potential energy of the initial Hamiltonian where all lattice 
and electronic quantum terms have been dropped. More generally, we 
propose the following definition. 

Anti-lntegrability. A tight-binding eleetron-phonon Hamiltonian 
without kinetic terms (concerning both the electrons and the lattice) is 
called anti-integrable. 
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Fig. 1. A random electronic configuration on a two-dimensional square lattice at the anti- 
integrable limit. The black dots represent empty sites i, nit = nis = 0, the open circles with two 
opposite arrows represent the doubly occupied sites ni~ = ni+ = 1 (bipolarons), and the smaller 
open circles with a single arrow represent the singly occupied sites ni~ + ni+ = 1 (polarons) (in 
the absence of a magnetic field, the single electrons have a arbitrary spin). 

The  e igens ta tes  of such a H a m i l t o n i a n ,  bu i l t  on ly  with the c o m m u t i n g  
ope ra to r s  n~ a n d  u~, are t r ivia l  a n d  c o r r e s p o n d  to a n y  a rb i t r a ry  d i s t r i b u t i o n  

of e lec t rons  where  rti~ = <llil ) = 0 or  1 a n d  n~+ = <ni;  > = 0 or  1 (see Fig. 1). 
W e  have  

n~7 - n~, 1 
u i =  ~ = 0 , -  ~ , o r - 1  ( l l a )  

The  wave  f u n c t i o n  of these states is 

i i 

where  l O )  is the v a c u u m .  6(x)  is the D i r ac  func t ion .  Thus ,  the whole  set 

822/67/3-4-17 
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of eigenstates of the system is labeled by random configurations of 
electrons. This situation is formally similar to those of structural models 
and dynamical systems at their anti-integrable limit. (1) 

Let us emphasize that nevertheless the anti-integrable Hamiltonian 
does not describe the "dynamics of some associated classical system." In 
fact, this limit is highly singular and physically pathological. This situation 
was also true for dynamical systems, where the hyperbolicity of the 
anti-integrable trajectories is infinite, or equivalently for anti-integrable 
structures, the coherence length is strictly zero. 

In spite of this, a perturbation theory can be built from this limit and 
yields physical results. Thus, for dynamical systems, nonsingular chaotic 
trajectories or structures are obtained as smooth, continuous functions of 
the amplitude of the perturbation. In the present model, we are able to 
perform this perturbation theory only with respect to the kinetic energy of 
the electron (t CO) and without any quantum lattice fluctuations (fl=O) 
which then define the adiabatic Holstein model. Note that because of 
definition (lOa), a small kinetic energy for the electrons (t small) is 
equivalent to a large electron-phonon coupling (k large). 

Adiabadici ty .  A tight-binding electron-phonon Hamiltonian 
without lattice kinetic energy terms (fl = 0) is called adiabatic. 

In that limit, the operator ui commutes with the Hamiltonian and thus 
can be considered as a scalar variable u i = (u~). The adiabatic approxima- 
tion is widely used for physical models because the mass of the atoms is 
much larger by several orders of magnitude than the mass of the electrons. 
It is often (but not always) a good approximation. Its validity is rarely 
checked, but it should be. In further publications, it will be shown that the 
condition for the validity of the adiabatic approximation requires the 
existence of a finite gap for the phonon spectrum, which indeed is a condi- 
tion fulfilled by the bipolaronic and mixed polaronic-bipolaronic states 
predicted to exist in this paper. 

In this paper, we only consider the adiabatic Holstein Hamiltonian 
(fl = 0), on which we can obtain rigorous results 

1 t 
/ - ) a d = ~ ( u ~ + n i u i ) - ~  ~ c~+ocj,~ (12a) 

�9 ( i , j ) , ~  

For any finite piece of lattice in 7/d, the electronic part of the 
Hamiltonian can be formally diagonalized 

1 1 
Had: E 2 u2 + 2 Z E~( {ui})c+acv,~ (12b) 

i v , ~  r 
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with 

and 

where { ~u~ } are normalized 

and fulfill the eigenequations 

c~,~ = ~ T~c~,~ (13a) 
n 

C + --: C ~,o (~,~) (13b) 

I~';I ~ = 1 ( 1 3 c )  
n 

- t ( 3 ~ ) .  + uo ~ ;  = E~({ue}) ~u; (14a) 

with eigenenergies Ev({u~}). This equation can be written ~rmally as 

~ ( { u ~ } ) . ~ V = E v ( { u ~ } ) P  (14b) 

with the electronic Hamiltonian defined as 

~({.i})=~({.,})-t2 (14c) 

The diagonal par t /~({ui})  of-~({ui}) describes the interaction of the 
electrons with the lattice distortion {un}, 

D .... =Unbn, m (14d) 

and the operator J = { An, m }, 

( z ~ F ) n  = 2 ~ t ~ = 2 z J n ,  m~[tVm (14e) 
m'K'n m 

corresponds to the kinetic electronic energy. We denote by m ~V" n the 
nearest neighboring site m to site n. Thus, the sum (14e) is done over m on 
the d-dimensional square lattice. In other words.we have ZJn, m = 1 if m ~ n 
and An, m = 0 otherwise. The diagonal terms of A are zero. 

The eigenstates of the adiabatic Holstein Hamiltonian are obtained as 
extrema of the variational form 

I~({Ui};  {ffv})=q~elast({Ui})-~-q~electr({Hi} ; {O'v} ) (15a )  
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which is then sum of the elastic energy of the lattice and of the electronic 
energy: 

1 
~elast({b/i}) = ~i ~ b/2 (15b) 

l~electr({L/i}; {O'v})=2 (TvEv({Ui}) (15C) 
v 

The electronic energy depends on the population factor {av} of the 
electronic eigenstates v, which can be chosen in various ways. 

2.3. Extensions of the Adiabat ic  Holstein Model  to 
Arbi t rary  Lattices 

Instead of working with this special operator (14e), it will hardly cost 
more work in the following to consider more generally an arbitrary self- 
adjoint operator J defined for an arbitrary nonexponential lattice. Let us 
define precisely what is a nonexponential lattice. 

De f in i t i on  1. We call a lattice 9_ = {N, B c N x A the association 
of a countable set N of points i called sites and of a set B =  {( i , j )}  of 
connected sites (called bonds) fulfilling the conditions (i, i ) r  • for all i 
and ( i , j ) ~ B ~ ( j ,  i)~ B. Connected sites are called nearest neighbors. 
A connected path {qz} with length p between two given sites n and m on 
the lattice D_ is a sequence of p + 1 sites q~ (~ = 0, 1 ..... p) such that q0 = m 
and qp = n and such that [q,, q,+ 1] are nearest neighbors. 

We assume in the following that there exists a connected path with a 
finite length between any pair of sites (m, n) e N x N (percolation condition 
for the lattice Q_). The distance on the lattice between n and m then can be 
defined for all pairs of sites. 

De f in i t i on  2. The minimum length p = d ( m ,  n) of the connected 
paths which connect two given sites n and m of the lattice l_ is the distance 
between m and n. For  m = n, d(n ,  n) = 0. 

It is straightforward to check that d (m,  n) satisfies the properties of a 
distance. For  example, for a d-dimensional square lattice 2 a, we have 
d ( m ,  n) = Im - n] -- 5~ d~=l ]m~ - n~], where {m~} (or {n~}) are the d integer 
coordinates of m (or n). 

We define NL(r; n) as the number of sites m at distance r to a given 
site n and N~(r)= Sup,  N~(r; n). Then we make the following statement. 
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D e f i n i t i o n  3. A lattice [ is called nonexponential when for any 
strictly positive number 2, we have ~2r N~(r)exp(-2r)= (o(2)< +oo. 

Since this series is absolutely convergent, ~o(2) is a smooth, differen- 
tiable function of 2 for 2 > 0. Most lattices [1_ of physical interest, such as 
standard periodic lattices and also fractal lattices, fulfill Definition 3 and 
thus are nonexponential. In most cases, the maximum number Nt(r) of 
sites rn at distance r from a fixed site n is finite and grows algebraically as 
r D - ~, where D is some "dimension" which is called by various names in the 
physics literature depending on the context, for example, spreading, chemi- 
cal, connectivity, or topological (...?) dimension. 

By contrast, for a Bethe lattice (also called a Cayley tree in mathe- 
matics) with coordination number na, the number of sites m at distance r 
of a site n of the lattice [1_ is n~_ for all n. For  2 going to zero, the sum in 
Definition 3 becomes divergent. Thus, such a lattice is exponential. 
Although to some extent we could apply our theory but with some extra 
care to these exponential lattices, we ignore here the study of these lattices, 
with are not physically realistic. 

We now consider the self-adjoint linear operator z~ defined on such 
a lattice. It maps C a =  { ~ n e C ,  nelL} onto itself, where C is the set of 
complex numbers and ~ is the set of sites. 

In the following, we assume: (i) the lattice 1_ is nonexponential; (ii) 
Ai . j=0  for sites i ,j  which are not nearest neighbors on the lattice 1_ 
[ ( i , j ) r  in particular, Ai, i=O for all i, and (iii) the supremum norm 

1121[ ~ = SupiZj  Izli, jl is finite. 
Such an operator zT can be defined, for example, for all kinds of 

periodic lattices (triangular, honeycomb, etc.) and also for periodic lattices 
with electronic transfer integrals between next-nearest-neighboring sites 
and farther, provided that the transfer integral A~,j vanishes beyond some 
finite distance D l i - j l  > D. It can be also extended to periodic lattices with 
randomly distributed missing bonds (percolation), to fractal lattices, to 
certain random lattices, etc. For  a given lattice 1_, electronic transfer 
integrals Ai, j can be also chosen random, complex, or both, which will 
allow one to also consider the effect of magnetic fields. 

The following lemma and propositions are proven for any lattice 1_ 
and operator z~ which fulfills the above conditions. The nonvanishing 
bounds t 3 to t ;  o n  t which appear in Thedorems 1 and 2 depend on several 
parameters involving the properties of the lattice 1_ and the operator A. The 
method for having explicit bounds is given, but the explicit calculation for 
each specific model is left to the reader. In order to fix the ideas, we only 
calculate explicitly t3 and t; for the standard d-dimensional square lattice 
&=Z d, ~= {( i , j )eZdxZ d, l i - jp=l} .  
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Our proofs are performed for arbitrary large finite subsets N with 
arbitrary topology of the considered lattice Q_. Then, the operators A, A, 
and /~ are restricted to ~ c D_ (which means that we set A n,m = 0 and 

An,m = 0 if n r N or m ~ g).  We take advantage of the fact that ~ involves 
a finite number of eigenvalues and eigenvectors which can be used in finite 
sums without any convergence problems. The final bounds turn out to be 
independent of the finite subset N c a_. To be complete, we prove that the 
limits of the bipolaronic and mixed polaronic-bipolaronic configurations 
for the infinite system are well defined. 

3. CHAOTIC POLARONIC AND BIPOLARONIC STATES: 
EXISTENCE THEOREMS 

At the anti-integrable limit ( t = 0 ) ,  the electronic eigenstates are 
trivially localized at the lattice sites of D_. According to the Pauli principle, 
each of these eigenstates is either empty, occupied by a single electron with 
arbitrary spin, or doubly occupied by two electrons with opposite spins. 
Thus, the many-bipolaronic and the mixed polaronic-bipolaronic states are 
obviously well defined at this limit. 

3.1. Bipolaronic and Mixed Polaronic-Bipolaronic States 
at the Anti-lntegrable Limit ( t = 0 )  

We first examine the simplest case corresponding to the bipolaronic 
states, where, by definition, the electronic eigenstates are either doubly 
occupied by a pair of electrons or are empty. Then, the electronic eigenstate 
of the whole system can be characterized by a pseudospin configuration 
{oi} defined as 

ni++ni+ 0 or 1 (16a) 0 , -  2 

(Warning: These pseudospins at which take two values 0 or 1 must not 
be confused with the physical spins of the electrons.) 

The extremalization of the adiabatic energy (15) yields that the lattice 
distortion at the sites i which are doubly occupied (a i=  1) is u i = - 1 ,  
which is also the corresponding electron eigenenergy Ev at this site. For  
sites i which are empty (o- i = 0), the lattice distortion is ui = 0 and there is 
a zero electron eigenenergy Ev. Since a pair of electrons localized on a 
single site and associated with a lattice distortion is called a bipolaron, 
these structures are by construction bipolaronic structures. The pseudospin 
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configuration {ai} explicitly describes the spatial distribution of these 
bipolarons. 

Since the doubly occupied states are degenerate at the eigenenergies 
- 1  and the empty states at the eigenenergies 0, the electronic part of the 
system is in its ground state with a Fermi energy E v which can be chosen 
arbitrarily in the electronic gap ] - 1 , 0 [ .  For example, EF = -1 /2  is a 
convenient choice. For these bipolaronic states at the anti-integrable limit, 
the electronic population factors {a~} in (15c) can be given by a simple 
characteristic function 

o-v = x(Ev) (166) 

Then, 

)~(x)= 1 for x < E F =  --�89 (16C) 

;((x) = 0 for x > E v = - - � 8 9  (16d) 

When switching on the electronic kinetic energy terms t r it ~s 
essential to keep this electronic population factor invariant in order to 
preserve the continuity of the investigated state when varying the 
perturbation. 

More generally, at the anti-integrable limit, the electrons can be taken 
in excited states. The electronic eigenstates may be empty, singly occupied, 
or doubly occupied. Since there is no electron-electron interaction in the 
model, the energy of the whole system (15a) does not depend on the 
physical spins T or ,L of the single electrons and the total energy (15) only 
depends on the pseudospin configuration {~}, 

niT + ni~=O, 1 
~ 2 ~, or 1 (17a) 

where ai now can take three different values. At sites i where o-i = 1/2, there 
is a localized single electron associated with a lattice distortion which is 
called a polaron, while at sites where o-/--1, there is a bipolaron. Thus, 
these structures are called mixed polaronic-bipolaronic states. Since the 
eigenenergy of the localized electronic state and the lattice distortion at site 
i are both equal to - ~ ,  the population factor in (15c) 

av = z(E~) (17b) 

can be defined by a function X(x)= 0, 1/2, or 1 which takes three values 
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instead of two as in the purely bipolaronic case. We can choose, for 
example, 

EF1 and EF2 

3 (17c) Z(x) = 1 for x < EFI -- 4 

Z(x)= 1 for EFI<X<EF2=--�88 (17d) 

Z(x) = 0 for EF2<X (17e) 

belong to their corresponding gaps of the electronic 
eigenenergies. As for the pure bipolaronic case, this electronic population 
factor will be kept invariant when switching on the electronic kinetic 
energy term. 

Since the electronic population factor a~ = z(Ev) is well-defined by (16) 
or (17), the variational form (15) is also well-defined and the problem 
which consists in its extremalization takes a form similar to those which we 
studied for Hamiltonian dynamical systems. 

We are going to prove that each of these eigenstates at the anti- 
integrable limit (characterized by an arbitrary pseudospin configuration 
{o-i}) persists and depends uniformly on small enough perturbations due to 
a nonvanishing electronic kinetic energy term in the Hamiltonian, that 
is, for small enough t or equivalently for large enough electron-phonon 
coupling k defined by (7b). Since it will be also proven that their 
physical properties (electronic gaps, defectibility, etc.) at the anti-integrable 
limit are also preserved, physical continuity makes it reasonable to keep 
the terms bipolaronic states or mixed polaronic-bipolaronic states for these 
persisting states. 

3.2. Perturbat ions of the Bipolaronic States 

We study first the perturbations at the anti-integrable limit of the 
bipolaronic structures characterized by pseudospins ai which take two 
values 0 or 1. We consider a finite part 5 of the infinite lattice 0_ with 
arbitrary shape with N sites and P electron pairs with 0 < P <  N. The 
b o u n d  t 3 on t which will be found for the existence of bipolaronic states is 
independent of P, of N, and of the shape and the size of the finite system 
5. It thus remains valid for arbitrarily large and thus infinite systems in the 
physical sense. 

Our strategy for performing an exact perturbation theory for these 
bipolaronic states at the anti-integrable limit is based on the following 
scheme: 

1. Define an operator St which maps ~ onto itself and such that its 
fixed points are extrema of the variational form (15a) for the population 
factor defined by (16). 
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2. For each given pseudospin configuration {an}, defined a compact 
domain g({a ,} ;  t ) c  R ~ which is a closed ball with radius t, the center of 
which is (approximately) configuration { a ,  }. 

3. For a given ~ and t, find r' such that S, maps g({a~};v) into 
e ( { ~ } ; < ) .  

4. Find an upper bound for Ih~a,lt~ restricted to the domain 
e ( { ~ } ; t ) .  

5. Show that t can be chosen in order that there exists t~ such that 
for t <  tl, g({O'n} ; l:) is stable by S, (which is obtained for r ' <  z), and t2 
such that for t <  t2, we have [t~S,[[ ~ < Ko in the domain g({a,,}; r), where 
Ko is a constant strictly smaller than 1. 

When t< t3=Min( t l ,  t2), according to the Banach fixed-point 
theorem, there exists a unique fixed point for St in g({a,};  t) which will 
prove Theorem 1. 

Remark 1. The ball g ({~ ,} ; t )  with radius t is defined with the 
Banach metric d({u,}, {v,})= Sup,~5 ] u , -  v,I. Since we wish to apply the 
Banach fixed-point theorem (8) in this finite closed ball, the condition 
1108~1/~ <Ko< 1 has to be fulfilled for the supremum norm II,~SIl~ of St in 
order that this condition implies d(St({u,}), St({v,})<Kod({u~}, {vn}) 
and that S, be contracting in g({a,,}; t). 

It is essential for a clear understanding of the following proofs to recall 
some standard definitions for operator norms. The norm of an operator 
depends on the norm which is used for the space of vectors )? on which this 
operator is defined. We essentially use the following. 

1. The supremum norm 

11811 ~ = Sup !IBXII~ 
x-~o I1s ~ 

of a given operator ~ is defined when the norm which is used for X -  {Xi} 
is the supremum norm [I)?l[~=Supi]Xil. Then, we have IIB]I~= 

Sup/~"~j [Bi, j] , where B~,j are the matrix elements of/~. 

2. The spectral norm 

11/~112 = Sup 11~s 

of the operator ~ is defined when the Hilbert norm i1s (Z ix ,  x,*) 1/2 
is used for X. For a self-adjoint operator, ki~Jl2 is also the supremum of 
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the modulus of the spectrum of ~ (for a finite operator, it is the largest 
eigenvalue modulus). 

The standard inequality [l~rl 2 ~ liar[[ oo holds between these two norms. 
In general, these two norms are not equivalent: note, for example, that for 
some operators B, [[Bl[2 may be finite while [[~[[o~ is infinite. 

The unpublished proofs of the theorem (essentially Theorem 1 in the 
following) which we described in early papers (~~ were wrong because we 
confused norms [[. [r 2 and H' [J ~. More precisely, we proved the existence of 
a constant Ko < 1 under appropriate conditions such that rl3S,J[ 2 < Ko. This 
condition did not imply that []0S,][oo<I and thus did not warrant the 
conditions of applicability of the Banach fixed-point theorem. The new 
proof presented here of Theorem 1, which follows much of the ideas of the 
initial one, is now correct, but we paid for this correction by more technical 
and tedious calculations. Finally, the theorem given in early references was 
confirmed, but for bounds on t smaller than initially. 

Def ini t ion of Operator  St. For { u ~ } ~  ~, the extrema of 
q~({u~}; {~v})satisfy the equation 

~({u,}; {~v})=u.+Lo _ _ = u . +  ya~l~,;({u~})l ~ (lSa) 0 = ~u, ~ ~u~ 

obtained by using the standard perturbation theory of Schr6dinger 
operators. The {Tt,~} are the eigensolutions of eigenequation (14b). We 
define the operator S, applied to an arbitrary configuration {u,} as 

{v,} = S,({u,}) (18b) 

where 

Vn= - -~  ~vl ~({Ui})l 2 (18C) 
v 

This operator has been defined in order that its fixed points {u,}, 
which fulfill {u,}=S,({u~}), are the solutions of Eq.(18a) and thus 
extrema of the variational form (15a). By the definition of (18c), - G  is the 
density of electron pairs at site n for the lattice potential {u~}, which is 
obviously between 0 and 1 since ~v 17t,~[ 2= 1. Consequently, we have for 
all n 

- 1  ~<vn~<O (18d) 

We now study the operator S, in a restricted compact domain 
g ( { o - n } ; r ) ~  e determined by the pseudospin configuration {o-i} given 
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arbitrarily and a given positive number ~< 1/2. This domain 
g ( { G , } ; ~ ) c R  s is defined as the set of configurations {u ,}eg({G,} ;z )  
fulfilling for all n e g the inequalities - 1 ~< u,, <~ 0 and l u, + a,t ~< v, or 
equivalently 

T 
u . + a , ( 1 - r ) +  ~<~ (19a) 

For any {u,,} eg({an};  r), it is convenient to write 

"c 

u~ = - (1  - v)(~r~ + e.) + ~ (19b) 

where 

"c 

]e.i ~< 2(1 - r) (19c) 

We first prove a lemma which asserts that for an appropriate domain 
of parameters, there always exists a nonvanishing gap in the electronic 
spectrum given by (14b) which separates the occupied electronic states at 
lower energy from the empty states at larger energy. Thus, in a domain 
close to the anti-integrable limit, we avoid degeneracy problems due to the 
possible crossing of occupied eigenenergies with an empty eigenenergy. 

This lemma involves essentially the spectral norm/lzTll 2 of the operator 
J [defined by (14e)] which is twice the dimension d for a square lattice. 

I . e mma  1. For 0 < ~ <  1/2 and any configuration {un} in 
g ({a ,} , r ) ,  let us consider the eigenequation (14b) with operator ~ 
restricted to a finite lattice subset 5c~_ with N sites. Let us set 
P = ~J'~ieg (~i" 

Then, for 

1 - 2~ 
t ~< - to (20a) 

2113112 

. ~  has P eigenvalues in the closed interval [ -  1 - -  112112" t, 
--1 + kl~ll2" t + r ]  and the N - P  other eigenvalues in the closed interval 

E-II2112-t-v, I1~t1=" t]. 
In other words, the eigenenergies Ev can be written as 

"c 

Ev= - ( 1 - r ) ( G v + e v ) - ~  (20b) 



698 Aubry et al. 

where a~ is the electronic population factor 

211~112't+~ 
led ~ (20c) 2(l-r)  

For a periodic d-dimensional square lattice L = 2U with operator (14e), 
take lIJl[2 = 2 d  in (20a) and (20c). 

Proof. The intervals [ -  1 - t113112, - 1 + t JI3112 + r3  and E -  t I]~ll 2 - ~, 
tllz~]121 do not overlap when condition (20a) is fulfilled. For t = 0 ,  the P 
eigenvalues of the diagonal operator .~ are { u, }. Because of (19b) and since 
3 2 , ~ a n = P ,  there are P eigenvalues in the interval [ - 1 , - 1  + r ]  and 
N - P  eigenvalues in the interval E - r ,  0] and Lemma 1 is proven. 

Let us now consider t r  When z does not belong to the extended 
intervals E - l - t l l 3 r l 2 ,  - l + t l r J H 2 + v ]  or [ - t l131r2-~,  tl131r2], the 
shortest distance of z to the spectrum of /~  is strictly larger than t113112; 
then we have 

and 

II(z~ -/~)-1112< 1 (21a) 
g113112 

[I t A ( z l  - ~ ) - ~ l l  2 < 1 (21b) 

The inverse of the operator (zi - ~) with A = D - t J  can be written as 
a convergent series, 

( A - g )  '=(A-z3)  ' ~ (-t)"(X(zi-~)-l)" 
n = 0  

(21c) 

with a bounded spectral norm and thus is invertible. Consequently, the 
whole set of eigenvalues of Eq. (14b) is included in the union I of intervals 

I=E-l-tl13112,-l+tllXlF2+r3~E-tll3112-T,t[12112] (21d) 

Since for a fixed set {un} the eigenvalues E~ are continuous function 
of t, and for t = 0  the number of eigenvalues in each interval remains 
constant, Lemma ! is proven. QED 

Now we can use this lemma for proving a property which allows one 
to determine domains o~({o'n},r) stable under the operator St when r ' <  r. 
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P r o p o s i t i o n  1. For any pseudospin configuration {a.} 
to an arbitrary finite subset ~ ~ 1_ and t ~< t o [defined 
operator S, maps g({a .} ,  r) into g({a=}, ~'), where 

with 

6 9 9  

restricted 
in (20a)], the 

o r  

SA = Sup ~ IA~,ml x <<. ]13112 (22b) 
n m 

For a periodic d-dimensional square lattice 1_ = 7/d with operator (14e), 
let us take 113112= S~ = 2 d  in (22a). 

ProoL For a finite lattice g with N sites, the matrix of the operator 
. ~ = / 3 - t 3  which corresponds to the first member of Eq. (14b) is an 
N x N symmetric matrix with a complete base of N orthogonal and 
normalized eigenvectors { ~P,~} which thus fulfill 

gt2 g~* = ~5,. (23a) 
v 

Multiplying both members of (14b) by ~u2* and summing over the 
index v, this property yields 

u. = ~ Ev({U,})l~g~,l 2 (23b) 
v 

The eigenequation ~ u =  E~({u~})~u implies 

z~2~v= ( j ~ 2  _ _  t J /~ - t / 3 3 +  t232) ~pv = EZ({u~})~  (24a) 

2 v = v 3 v - (24b) u . % - t u , , ~ % - t  (uo %)  + t232e~ = E~({u,}) e~ 

After multiplication of both members of (24b) by ~.~'* and summation 
over v, we find after using (23a) that 

u2 + t2 2 IZ~n, ml 2 = 2 E2~( {ui} ) I ~jvl2 (24c) 
m v 

For {u.} ~6~ r) we now calculate the expression 

I = ~  E ~ + ~ + ( l - r ) c r ~  I~Ull 2 (25a) 

4t2S~ + "C 2 
~' = (22a) 

4 ( 1  - r ) ( 1  - 2 ~  - 2 t  113rl ~) 
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By using the equalities (23b) and (24c), [ ]2 
I=tZ~lAn,  ml2+ u . + 2 + ( 1 - - r ) c r  . =t2~lA..m12+(1-2-)2e ] (25b) 

m m 

where we have used the definition (19b). Using (19c), we have 

2-2 2 .2  

I<~ t2 ~ IAnml2 +-;-<<. t2aA + ~ (25c) 
, t 4 

m 

with S~ defined by (22b). This expression can be calculated differently by 
using the definition (20b), 

I =  (1 --2-)2 Z (~ r . - -~v  • 8~)2 1~;12 
v 

\ v  v / 

Using (20c) and the identity ( a . - a v ) 2 =  l a . - a v l  = 0 or 1, we find 

I~> (1 - 2-)2 2 IO'n - -  o'vl (1 -- 2 levi) I ~U~12 
v 

> ( 1 - 2 - ) 2 (  1 211~112t-+2-']1-2- ~2 I~ la.-a~1 I%1 

= (1 -2-)(1 -22--2t113112) Y, Io-.-a~l IgS~l 2 (26b) 
v 

By using the definition (18b) of {v.} = St({un}), this inequality yields 

I~> (1 - 2-)(1 - 22- - 2t IIJII 2) I~r~ + v.I (26c) 

Combination of inequalities (25c) and (26c) yields 

4t2Sa + 72 2 

lan + v.I ~< (27) 
4(1 - 2-)(1 - 22- - 2t 112112) 

which readily implies Proposition 1, since - 1 ~ v, ~< 0. QED 

C a l c u l a t i o n  o f  dSt .  For continuing our proof, we have now to 
prove that the operator St becomes contracting for small enough t. For 
that purpose we consider the Jacobi matrix J({ u, }) at a configuration {Un } 
of the operator St, 

J= {Jm,n} (28a) 
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with 

Jm, n - -  ovrn  - -  2 a,, T 2 - - - -  atom CC (28b) 
cgu~ ~ Ou~ 

CC means the complex conjugate of the previous term. In order to fix the 
ideas, we assume first that there is no degenerate eigenenergies. Then, 
standard perturbation theory for the eigensolutions of Eq. (14b) yields 

and 

T~,'*T; (2%) 
0%_ Z Ev,- 

~lgn v' 4-v 

J m ,  n - - - -  2 
V,v' ~ V  

v ' *  v 

T.  T~ + CC 
~ %*% e ,-Ev 

v* v' v'* v 

av(1 -av ,  + ar T,,, ~Jrn~t'l  n ~-'r (29b) 
~,~' e~ E v , -  Ev 

The expression a~av, T~,* v' v,* T r o t  ~ ~ , / ( E ~ , -  Ev) + CC is antisymmetric 
with respect to the indices v and v'. Thus, the sum of these terms in (29b) 
over v and v ' r  v'is zero and 

v '  v ' *  v 

J m ,  n = ~ ,  c%(1--av,) ~Jfn*~[Jrn ~-Jn ~/n--~CC (29C) 
v,v' E v , -  Ev 

We now note that in the conditions where Lemma 1 holds, the 
possible degeneracy between the eigenenergies Ev never causes a problem 
in formula (29c) because Ev=Ev, implies av=a~,.  Then, the prefactor 
a~(1 -  av,) in (29c) necessarily vanishes, which presents any divergence of 
Jm,, due to the zero denominator in (29c). Consequently, when there is a 
nonzero gap between the occupied electronic states (a~ = 1) and the empty 
electronic states (av = 0), the matrix of derivatives ) r ema ins  well-defined 
even in the case of degenerate eigenenergies, 

We have to find an upper bound for the supremum norm ItJll ~ of 
operator J, 

II)ll~ =Sup  tl)-s where [1s =Sup  [X,I (30a) 

The supremum norm (30a) is equivalently defined as 

IlYll ~ = Sup ~ IJm,~l (30b) 
m 

n 
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For  the estimation of IlJll ~, we propose to bound the matrix elements 
IJm.nr as a function of the distance d(m,n) between the two sites m~  2U 
and n e 7/a. For proving that the operator S, could be contracting, we prove 
the following result. 

P r o p o s i t i o n  2. Let us consider ~_ an arbitrary lattice as defined in 
Section 2.3 and an arbitrary finite set ~ c k on which the operator S, is 
restricted. Let us assume 

1 
t <  [e 7 0 _ r ( 3 + e  70)] 

6112112 

with ,0 = e 3/2/2 ~ 0.11156508. 
Then there exist two c o n s t a n t s ,  and C 

, = 7 0 (  1 ~2_ [[~112 t -  2"c~ 2 

1+2112[]2t / ~<,o 

c = (15t 1[311 ~)2 

(31a) 

(31b) 

(31c) 

such that for all m and n in S, we have 

IJm,nl ~ C exp[--,d(m, n)] 

Thus, for a nonexponential lattice D_, we have 

(32a) 

[[j[[~<~ CSup (~m eXp[-Td(m,n)])=Ccp(,)< oo (32b) 

and for a periodic d-dimensional square lattice l_ = 7/a with operator (14e), 

(e' + l'] a 
IlJII o~ ~< C \e-7-U]-_ 1 j (32c) 

[then take IIzTII2 = IL~II~ = 2 d  in (31b) and (31c)]. 

ProoL Step I. Using the eigenequation (14b), we first rewrite the 
form Jm, n in order that the parameter  t appears as a coefficient. Thus, for 
t going to zero, it becomes easier to prove that Jm.n goes to zero as well 
as the supremum norm IlJll co. This will prove the existence of a domain in 
t and z such that II)11 oo < 1 and where the operator S is contracting. 

By elimination of un between the two eigenequations 

- t A ~ 2  + u n ~,~ = Ev ~2 
v '*  v '*  --tA~,'*+un~n =E~,~ 

(33a) 

(33b) 



Chaotic States in Adiabatic Holstein Model 7 0 3  

we obtain the identity 

v v v ' *  t(}t/:, '*A~.-g/.Ag/. ) =  ( E < - E ~ )  ~.' ~. <* 

By substitution in (29c), we obtain 

(33C) 

Jm, n 2 
v, v ' 

• [ ( v 2  v 2  u, v v,. - - ~.,JT' )+cc] ~Jm)(~Jn A ~  n (34a) 

Since the terms in the sum can be easily bounded, this form makes it 
explicit that for t--+ O, Jm, n goes to zero. Expanding the product in (29c), 
we obtain four kinds of terms: 

Jm, n = t2 2 Z~rn, qZ~n,p(Zm, n,p,q-~ Tp, q . . . . .  -- Zp . . . . .  q 
p,q 

with 

- Tm, q,p,.) + CC (34b) 

T m , . , p , ~ = E ~ - - ~ ) 3 - - m - - .  p --q 
v, v' 

(34c) 

which is easily bounded by 

IJm,~l ~8t2 (~q IAm, q[)(~p ]Am, pl) T .... ~8t2l[z~[[2Tm,~ (34d) 

where Tm, n is an upper bound for all terms (34c) which appear in (34b). 

Stop 2. We now calculate this upper bound Tm, n. The first condition 
(31 ) implies 

1 
z < - -  - z 0 ~ 0.22966 (35a) 

3e ~~ + 1 

C -- 70 

t < < to (35b) 
6113112 

which allows one to apply Lemma 1. Let us consider, for example, the first 
term of (34c), Tm:;p,q, in (34b). With av as defined by (16), it can be 
written as 

v '  v *  v ' *  v 
r . . . .  p,q = ~. F(ev, Ev,) ~Jm ~[-/; ~Jn ~.lq 

v, v' 
(36a) 

8 2 2 , ' 6 7 / 3 - 4 - 1 8  



704 Aubry e t  ai. 

where F(x, y) is a two-variable function defined as 

[-1 - Y(x + 1 / 2 ) ]  Y(y + 1/2)  
F(x, y) = 2 (y _x )3  (36b) 

where Y(x) is the Heaviside function defined as Y(x)= 1 for x~>0 and 
Y(x) = 0  for x < 0 .  

Our method consists in finding an approximation of F(x, y) by a 
polynomial Pr(x, y) with degree r = Min(d (p ,  q), d(m, n)) - 1, 

F ( x ,  y )  = P r ( X ,  y )  -[- R r ( X  , y )  (37a) 

with an error 

[R(x, Y)I < er = Ce -xr (37b) 

which decays exponentially as a function of r. Each term xiy; of this 
polynomial yields a contribution to the sum (36a) of the form 

v* v'* v 

v, v' 

\ v 

( ~  ; v, v ,*)_-~ - j  E~, ~ m  ~[Jn --  Ap, qAn, m 
\ v '  / 

(37c) 

and can be expressed as matrix elements of powers i and j of the operator 
(14c), , ~ = /3 - t z ~ .  Since by definition the matrix elements p, q of the 
operator ~ (or ~) are zero for sites p, q at a distance d(p,  q) > 1, it readily 
turns out that the matrix elements p, q of ~/ are zero when d ( p ,  q) > i. 
Since the degree r of the polynomial P(x, y) with respect to x is smaller 
than or equal to d(p,  q) - 1, the contribution t o  Tm, n,p, q of this polynomial 
is zero, and the term which is left is bounded, by using (37b), as 

tTm, n;p,q] = E R(Ev ,  Ev') ~_1~s v* v'* v 
v,v' ~[.If ~ n  ~_,tq 

< er ~ I ~,~l �9 I gt~'*l X ~ I ~p*l - I ~ql < er (38a) 
v' v 

A rather tedious explicit calculation of the polynomial approximations 
is done in Appendices A and B (however, we did not find the optimum 
approximation). We obtain 

ITm,n;p,q[ ~ 25 exp{ - ~c[d(p, q) + d ( m ,  n)] } (38b) 
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where ~: = 7/2 is given by (B4c). Similar inequalities for the other terms in 
(34b), such as Tp ..... q, involve d (p ,  n ) +  d(m,  q). In the sum (34b), m and 
q are nearest neighbors [d(m,  q )=  1 ], as are n and p [d(n, p ) =  1 ]. Thus, 
these distances fulfill the well-known triangular inequalities d (p ,  n)~> 
d(m,  n) - 1, d(m,  q) ~> d(m,  n) - 1 and d (p ,  q) ~> d(m,  n) - 2, which 
implies 2 [d(m,  n ) -  1] and d(p,  n)+d(m,  q)~>2[d(m, n ) -  1]. Then, we 
can choose in (34d), with 7 = 2K ~-< 70, 

Tm,, = 25 exp(7o ) exp[ - 7 d ( m ,  n)] (38c) 

Definition (31b) implies 2e'/~ < (3/2) 2. Then, (34d) yields 

]Jm,n] ~ 8t2113112- 25 exp(7o) exp[ - 7 d ( m ,  n)] 

< (lSt 11311 ~)2 e x p [ -  7d(m, n)] (39a) 

which proves inequality (32a). If n = m, we have the same bound for IJm,=] 
with m and n nearest neighbors and for [Jn,~[, and (32a) is fulfilled a 
fortiori. 

The supremum norm of J defined by (30b) is obviously bounded, 
because of the assumption that 1_ is a nonexponential lattice. 

For a square lattice Z d, D = d is the true dimension of the lattice and 
it is readily found that 

IiJl[ ~ = Supra ~'n IJm, nl ~ C n~Zd~e 71hi= C ( i = ~ 2  e ~lil) d (39b) 

which yields (32c). QED 

Using the above results, it is now easy to prove the first existence 
theorem of this paper. 

T h e o r e m  1 (Bipolaronic States). Let 1_ be a given infinite non- 
exponential lattice fulfilling the conditions of Section 2.3 and 3 an operator 
defined on 1_. Let us consider an arbitrary finite subset 5 c l_ with N sites. 

Let {or,} be an arbitrary configuration of pseudospin ( a n = 0  or 1) 
with n ~ 1_. 

Then there exists a strictly positive constant t3 > 0 independent of 5, 
such that for 

t < t 3 (40a) 

there is a unique local minimum {un(t)} of the adiabatic energy (15) 
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restricted to 5 with a population factor for the electrons given by (16d) 
which is a uniformly continuous function of t and such that for t = 0 

u,(0) = - a ,  (40b) 

For  example, for 0_ = Z d and z~ defined by (14e), we have the bound 

1 ( e ~ ~ 1 7 6  l d 
t 3 = 3 ~ \  ~o /' \ ~ ]  =3~(0 .124086)  (40c) 

This solution {u,(t)} is the unique fixed point of S, in g({~,},  z) with, 
for example, z = 1/5. 

Proof. Propositions 1 and 2 allow one to find t and z in order that 
the operator S, maps_d~({a,}, r) into itself with a Jacobian matrix J with 
a supremum norm [Ill[ ~ strictly smaller than 1. 

1. Proposition 1 shows that z' goes to z2/4(1 - z ) ( 1  - 2 z )  when t goes 
to zero. It is sufficient that z fulfills (35a) for having this limit strictly 
smaller than z. Consequently, there exists t~(z) such that for t < t l ,  the 
domain g({a ,} ,  z) is stable under S,. 

2. For  z fulfilling (35a), Proposition 2 shows that when t goes to zero 

7 goes to 7 o ( 1 - 2 z ) 2 > 0  and II)11oo goes to zero as C=C~(15 t l l J l [~ )  2. 
Therefore, there exists t2(z ) such that for t < t2, we have IlJll ~ < go < 1 and 
S, becomes contracting. 

As a result, by choosing a value for z which fulfills (35a), there exists 
0 < t 3 ---= Min(tl(Q, t2(z)) such that for t < t3, the conditions for the applica- 
tion of the Banach fixed-point theorem (8) to the operator S, in the domain 
g({a ,} ,  z) are fulfilled. This unique fixed point is the configuration {un(t)} 
solution of Eq. (18a). 

For  proving that {u,(t)} is a uniformly continuous function of t, it 
suffices to prove that the operator S, defined by (18b) is a uniform function 
of t. Indeed, we consider the derivative OSJ& with respect to the parameter 
t of this operator: 

�9 ' m 

o-~(1-a~,) ~:~P%u~'* ~uv 4- CC (41a) 
= ~ Ap, m 2  Ev ' Ev --n --n m p - - - - -  

m, p v, v' 
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A uniform bound can be found for ]~?v./Ot[ by using exactly the same 
scheme as that of Appendix B but where the series (B3a) is replaced by the 
simpler expansion 

1 1 ~ ((1 - r ) -  (E~,- E~)); (41b) 
E , _ E m -  1 - - r e=  ~ 1 ~ -  

Keeping the same definitions for ~c, 2, and r = Min(d(m,  n), d(p, q)), 
we obtain by inspection of inequality (BSb) for Tm,~;p,q 

1 ~ I 1 
[Sin n'pql < - -  E exp{-- tc[d(q ,  p)+ d(m, n ) - 2 -  2i]})J +T-~_r ~r ;d 

, , , I - - T i = 0  . =  

exp(2~c) 
= exp{ - tc[d(q, p) + d(m, n)] } (1 - r)[1 - 2 exp(2~c)] 

2 ~ 
+ (42a) 

( l - r ) [ 1  - 2 exp(2~c)] 

where 

av(1 -av,) v, v'* v*~JV=Sn, m;q, p 
Sm'n;p'q= E Ev, Ev ~m ~" ~PP q * 

v, v' 
(42b) 

Thus Sn, p;n, m decays exponentially as a function of the distance 
d(m,n) since d ( p , n ) > ~ d ( m , n ) - d ( p , m ) = d ( m , n ) - I  and d(m,n)+ 
d(p, n) >1 r >1- 2d(m, n) - 2. Since with (B12a), 2 < e - 2 •  = e 7, there exists a 
constant K 1 such that 

[Srn, n;n, pl ~ K1 e x p [ - - y d ( m ,  n)] for p and m nearest neighbors (42c) 

This result is enough for showing that for n fixed, the sum (41a), 
which can be written as 

~V n 0~ = ~ Am, pS,~.n;n.p + CC (43) 
m,p 

is absolutely convergent and uniformly bounded. In addition, this upper 
bound Supn ]Ovn/Ot I < oo does not depend on {un}. Consequently, since the 
operator St is differentiable with respect to the variable t with a uniformly 
bounded norm for its derivative operator OS,/~t, S, is a uniform function 
of r The configuration {un(t)}, which is a fixed point of S,, is also a 
uniformly continuous function of t in the domain t < t 3. 
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We also have to prove that the fixed point {ui} of this operator St are 
always local minima of the variation energy (15). This is a straightforward 
consequence of the contracting property of S,. The matrix ~ t ({u i})=  
{Mm, n } of second-order derivatives of this energy 

_ _  02E~ 

�9 ~Urn Obln " v ~Un ~blm 

~91 7xLI 2 
= 6,~,m + ~ O-v - -  (44a) 

v ~Hn 

(which corresponds to the QEAM introduced for dynamical systems (1~) 
can be expressed as a function of the matrix J({u~})--o S,({u,}) defined in 
(28) as 

~({u~}) = i - J({u~}) (44b) 

The supremum norm IlY({ui})[I ~ is strictly smaller than 1, since S, is 
contracting at {u i}. Using the property that the spectral norm I IJ({u,})lI2 
of an operator is always smaller than or equal to its supremum norm 

IlY({u,})ll ~, we have IlY({ui})tI2 < 1. As a consequence, with the quadratic 
form {XI Y) denoting the Hermitian product of J( and Y, we have that 

<Xl ~ IX) -- <J?l i 12) - <Xl Y IX) > < x l x ) l - 1  -lY({ui})lI2] > o  (44c) 

is strictly positive and the configuration {un} is a local minimum of the 
variational form (15). 

P a r t i c u l a r  Case.  In the case of a d-dimensional square lattice, with 
operator (14e), we calculate an explicit value for the bound 13. Using (31a), 
(32a), and (32b), we have 

,o <' ( e , o + l y  IlJll ~< \e-TCS-l) ~< (30td)2 ,)," 

=(30td)2(e~~ l']d( l+__4dt .~2d 
\ 70 ] \ l -4d t -2rJ  

.<t30,d)2(e'O+l W )2d 
t to )\3-g VoT 27+7 o)) 
(eY~ + l~d(3e'~ + 1"~ 2d 

= (30td)2 \ ~ - o  ) \ ~ )  (45a) 
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which yields Ilfll oo < 1 when 

1 ( e ~ ~ 1 7 6  
(45b) 

Finally, we check that when t < t2, r can be chosen in order that 
Lemma 1 and Propositions 1 and 2, which were used for finding this bound 
(45b), are indeed applicable. We have to satisfy inequality (20a), condition 
r ' < z  with z' given by (22a), and inequality (31a), which yields, with 
[Iz~ll 2 = 2d, the following conditions: 

1 - 4d t2  
r < - -  (46a) 

2 

4d t~  + ~2 
< r (46b) 

4(1 --r)(1 - 2 z - 4 d t 2 )  

1 - 1 2 t d e  "e~ 
< (46c) 

3e 7~ + 1 

One can check, for example, that the value 

z = 1 / 5  (46d) 

is a convenient choice at any dimension d. Consequently, for t and z 
fulfilling (45b) and (46d), the operator St maps g({o-n} , r) onto itself 
and is contracting for the supremum norm. Thus, we have explicitly a 
domain g({an) ,  1/5), where the Banach fixed-point theorem applies for 
t < t z =  t 3. QED 

To be more explicit, the bound (40a) yields 

t~<0.004136 ( o r k >  15.5489) for d =  ! (47a) 

t ~< 0.000256 (or k > 62.4242) for d =  2 (47b) 

t ~< 0.0000212 (or k > 217.039) for d =  3... (47c) 

We recall that k is defined by (10b). 
We pay by rather loose bounds for the crude estimations which were 

done in order to reduce the tedious calculations. In fact, the numerical 
calculations 3 (mostly done in one-dimensional models, but recently also in 

3Dor d= 1, see refs. 3-6; for d=2, numerical calculations by R.L. Raimbault and 
P. Quemerais are in progress. 
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two dimensions) yield much larger bounds for t 3 (or much smaller k) for 
the existence of bipolaronic states. On the basis of the numerical observa- 
tions, we can estimate roughly the best bound to be t3~ 1/(4d) for a 
d-dimensional square lattice, which is much larger than the values (47)! Let 
us note that for t larger than 1/(4d), Lemma 1 suggests that the interval of 
occupied eigenenergies starts to overlap the interval of eigenenergies of the 
empty states, so that degeneracy problems emerge. As for the Frenkel- 
Kontorowa model, they are likely related to bifurcations. 

In fact, although we exhibit here a common bound t3 valid for the 
existence of the bipolaronic states for any configuration {an}, the domain 
of existence for many particular bipolaronic configurations {an} can be 
wider (especially for well-ordered configurations). As for the FK model, 
where the domain of existence of the anti-integrable trajectories sharply 
depends on their coding sequence, (1) the domain of existence of the 
bipolaronic configurations also depends on their pseudospin configuration 

{an). 
It is obviously possible to improve analytically this bound t3, for 

example, by refining the polynomial approximation in Appendix A and by 
"stressing" the inequalities given in Appendix B, but we believe that in any 
case these more precise estimations should remain far below the numerical 
accuracy and thus should have a minor practical interest. The interest of 
Theorem 1 is essentially conceptual, since it proves the existence of a non- 
vanishing domain in t where the bipolaronic states do exist. For com- 
parison, recall that the KAM theorems predict the existence of invariant 
tori for dynamical systems in domains of parameters which also have a 
negligible physical extension, while the numerical investigations reveal a 
much larger physical domain. But in both situations, having exact results 
gives a solid support for the interpretation of numerical observations. 

3.3. Perturbat ions of the Mixed Polaronic-Bipolaronic  States 

The method used for proving Theorem 1 can be extended with few 
changes for studying the case where the electrons are not in their ground 
state with regard to the lattice distortion. Then the electrons are in excited 
states with the population factor (17). We obtain the following theorem 
(see Fig. 2). 

T h e o r e m  2 (Mixed Polaronic-Bipolaronic States). Let O_ be a given 
infinite nonexponential lattice fulfilling the conditions of Section 2.3 and 
an operator defined on L Let us consider an arbitrary finite subset 5 c 0_ 
with N sites. 
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(a) 

�9 Y T Y 

. . ~ . . 

s 

; ~ , ) -  

2 . 

(b) 

Fig. 2. Illustration of Theorem 2: (a) The electronic transfer integral d~ is nonzero along the 
lines which connect the sites on the square lattice. When this perturbation is not too large 
(t < t;), there exists an eigenstate of the adiabatic Holstein model which is uniformly close to 
an eigenstate at the anti-integrable limit (shown in Fig. 1). (b) The same results hold for an 
arbitrary nonsquare lattice at any dimension, random or not. Theorem 1 could be illustrated 
by similar figures containing only black dots (empty sites) and circles with two opposite 
arrows (bipolarons). 
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Let {o-n} be an arbitrary configuration of pseudospin (an=0,  1/2, 1), 
where n ~ L 

Then there exists a constant t; > 0 independent of S such that for 

t < t; (48a) 

there is a unique local minimum of the adiabatic energy {un(t)} of the 
adiabatic energy (15) restricted to S, with the population factor for the 
electrons is given by (17b), which is a uniformly continuous of t and such 
that for t = 0 

un(0) = - ~ r  (48b) 

For example, for ~_ -- Z a and 3 defined by (14e), we have the bound 

, 1 ( e~~  d/2((2--e-~~176 6_3d(0.054909) a (48c) 

This solution {u,(t)} is the unique fixed point of S, in g({~rn}, r) with, 
for example, r = 1/8. 

Proof (see Appendix C). The ideas for the proof of this theorem are 
the same as those used for Theorem 1. However, there are some technical 
differences which make the bound t; smaller than t 3. It is not necessary to 
reproduce the complete proof. Appendix C essentially focus on the changes 
from the proof of Theorem 1 which need to be done for obtaining 
Theorem 2. 

The same remarks as for Theorem 1 apply. The best common bound 
t; which could be numerically observed is much larger than the one which 
is given by this theorem. In addition, it also depends on each configuration 
{~,}. 

These mixed polaronic bipolaronic states have the property that the 
electronic eigenenergies can be grouped into three packets separated by 
two energy gaps. The low-energy packet corresponds to double occupied 
eigenstates, the medium-energy packet above to singly occupied 
eigenstates, and the last one at the top to empty states. Compared to the 
bipolaronic states, where there are only two packets of eigenstates, the 
medium-energy packet appears in the middle of the electronic gap. 

Consequently, we can say that the mixed polaronic-bipolaronic states 
correspond to bipolaronic states where many midgap states are excited. 
Midgap states were already known to exists in some models. For example, 
the "soliton" in the SSH model (18) corresponds to a single midgap excita- 
tion. Thus, this theorem generalizes the concept by proving the existence of 
states with many-midgap excitations localized in real space. However, it is 
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important to note that the metastability of these many-midgap states 
requires smaller values for the amplitude t of the transfer integrals. 

A simple argument proving that t; has to be smaller than t3 is 
obtained by noting that when only the polaronic states (with ~r~ = 0 or 1/2) 
are considered (all the electronic states are singly occupied and av = 1/2 or 
0), the variational form (15) can be written 

where 

1 1 
(49a) 

a" = 2a~ = 0 or 1 (49b) 

With the change of variables u i=  u;/2 and t ' =  2t, the lattice distortion 
associated with this polaronic structure {ui} corresponds to those of the 
bipolaronic state {u;} characterized by ~r; = 2~ri. Consequently, the bound 
for the existence of mixed polaronic-bipolaronic states is necessarily at 
least twice as small as the bound for the existence of bipolaronic states: 
t'3 <~ t3/2. Numerical observations suggest for the common bounds that 
t; ~- t3/2. 

Finally, before ending this section, let us give a theorem which asserts 
that we have well-defined limits in the limit of an infinite system. 

By definition, a sequence of finite subset 5n = 1_ converges to 1_, 
lira= . ~ 5= = 1_, when for any site i e I_ there exists an integer Ni such that 
for n >~ N~ we have i e 5n. 

Then, we have the following result. 

T h e o r e m  3. For t < t 3 (or  t < t~) and a given pseudospin configura- 
tion {ai} ( i t  1_), bipolaronic structures (or mixed polaronic-bipolaronic 
structures) {ui} depend on the subset 5n of the infinite lattice 1_. Then, for 
all i, l i m , ~  u~(Sn) is defined and does not depend on the sequence of 
subsets 5= c 1_ which converges to 1_. 

ProoL The proof of this theorem makes use of the "secateur method" 
described in Section 4.3 for proving Property 4. Since we need preliminarily 
the proof of Property 3, the proof of Theorem 3 will be given in the sub- 
section following this result. 

4. P R O P E R T I E S  OF T H E  M I X E D  P O L A R O N I C - B I P O L A R O N I C  
A N D  B I P O L A R O N I C  S T A T E S  

We now analyze the physical properties of these bipolaronic and 
mixed polaronic-bipolaronic states predicted by Theorems 1 and 2. These 
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proper t ies  concern  (1) the electronic spectrum,  (2) the p h o n o n  spectrum,  
(3) the coherence length and  the effective loca l iza t ion  length of the 
po la rons  or  b ipo la rons ,  (4) the effect of a magnet ic  field, uni form or  not, 
and  (5) the g r o u n d  state of the var ia t iona l  form (15) wi thout  or  with a 
uni form magnet ic  field. 

4.1. Electronic Gap 

The electronic spec t rum of the e lectrons in the potent ia l  which is 
c rea ted  self-consistently by the lat t ice de fo rma t ion  has simple proper t ies  
which are direct  consequences  of L e m m a  1 for the b ipo la ron ic  states and  

Fig. 3. (a) Scheme of the distribution of the electronic eigenenergies for a bipolaronic 
structure. The occupied electronic states belong to the lower band and the empty states to the 
upper band. (Note that the spectrum does not necessarily fill completely the two intervals and 
might be very singular.) (b) Scheme of the distribution of the electronic eigenenergies for a 
mixed polaronic-bipolaronie structure. There are three bands instead of two. The middle band 
corresponds to midgap states. 
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Lemma C for the mixed polaronic-bipolaromic states. There exists one or 
two gaps in the electronic density of states. We just summarize the conse- 
quences of these lemma (see the scheme of Fig. 3). 

Property 1. For the purely bipolaronic states, there is an open 
interval l E g ,  E + [ in energy such that: 

a l. The electronic Hamiltonian A = D - t z ~  defined by Eq. (14b) has 
no eigenenergy in this interval. 

a2. The electronic eigenstates with eigenenergy Ev fulfilling E,. ~< Eg 
are occupied by a pair of electrons with opposite spins. 

a3. The electronic eigenstates with eigenenergy Ev fulfilling E + 4 Ev 
are empty. 

For the mixed polaronic-bipolaronic states, there exists two disjoint 
intervals ] E ~ ,  E + [ and ]E  L,  E + [ such that: 

bl. The matrix / ~ - t J  defined by Eq. (14b) has no eigenenergy in 
both intervals. 

b2. The electronic eigenstates with eigenenergy Ev fulfilling E~ ~< E~ 
are occupied by a pair of electrons with opposite spins. 

b3. The electronic eigenstates with eigenvalues E, fulfilling 
E + ~< E~ ~< E~ are occupied by a single electron with arbitrary spin. 

b4. The electronic eigenstates with eigenenergy E v fulfilling E + ~< E~ 
are empty. 

4.2. Gap Parameter, Phonon Spectrum 

We already know by Theorems 1 and 2 that the bipolaronic and 
mixed polaronic-bipolaronic states are local minima of the variational 
energy, that is, the quadratic form associated with the matrix of second- 
order derivatives of the adiabatic energy (15) is strictly positive. 

It is a straightforward consequence to prove that their phonon 
spectrum exhibits a nonvanishing gap. The phonon spectrum is obtained 
within the adiabatic approximation from the classical dynamical equation 
for the atomic lattice, 

miii = (50a) 
c?ui ~uj 

By an appropriate choice of the time unit, the mass m of the atoms 
can be chosen equal to 1. The electrons are supposed to remain in 
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adiabatic equilibrium with the lattice. A time Fourier transform yields the 
eigenvalue equation for ~ = {ui(co)} = {~ ug(t)e i~ dt}, 

e)2~(co) = / 1 ~  (50b) 

As for Hamiltonian systems, we have the following statement. 

D e f i n i t i o n  4. The square frequencies ~o 2 of the phonons are the 

eigenvalues of the matrix ~ ( {  u, }) = i - )({ u, }). The gap parameter of a 
bipolaronic or mixed polaronic-bipolaronic structure is defined as 

1 
A = (51) 

I l ia(  { b/n } )ll 2 " llJ~f-- l({Un })l[ 2 

Since the bipolaronic or mixed polaronic-bipolaronic structures are 
attractive fixed points of the operator S, for the supremum norm, we have 
][OS,][ co = ][J({u.})[[ co < 1, which implies_ []J({u.})[[2 < 1 for the spectral 
norm and that all the eigenvalues of ]({u.})  have a modulus strictly 
smaller than 1. 

Otherwise, let us prove that ]({u.})  determines a positive quadratic 
form. For a mixed polaronic bipolaronic state, we use the decomposition 
(C7) of J({u,}) described in Appendix C. Then, for any vector X, the 
expression 

X3X= Z * (1) (2) Xn (Jm,  n-}- i m ,  n ) X m  
n,m 

= ~ x~(E~)[1-z~(E,')] 
n,m, v, v 

X ~  v* v' v'* v T.  ~ .  ~m TmX~ 
+ CC 

Er • E~ 

._ .  _ .  % ~ ~mX~+C C L + z2(E~)[1- x2(E~,) ] 
....... E~, - E~ 

= 2  ~ {zI(Ev)[1 -Zl(Ev,)] + x2(E~)[-1--z2(Er l~2m ~,~*~,Xml 2 
~,v' E~, -  E~ 

(52a) 

is the sum of positive terms, and thus is always positive. When 

Xm = 1 for all m (52b) 

we have 

XJX= 0 (52c) 

since we have v r v' and the orthogonality property ~ m  v'* v 
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Consequently, )({u,})  determines a positive form, but zero belongs to 
its spectrum. 

For purely bipolaronic states, the method for proving that )({un}) 

also has this property is the same but simpler, since ]({un}) does not need 
to be decomposed into the sum of two matrices as in (52a). 

The eigenvectors It) of matrix J and matrix M = 1 - ]  are identical 
and the eigenvalues co, 2 of ~r can be written as 1 -  2,, where 0 ~< 2, ~< 
]])1] 2 < 1 are eigenvalues of J. Consequently, we have 

11~112 = 1 (53a) 

and 

I1~_1LI2_ 1 (53b) 
1 - I IJH2 

which yields that the gap parameter A of the mixed polaronic-bipolaronic 
configuration is 

= 1 -11)112 > 0 (54) 

and we have the following result. 

P r o p e r t y  2. The gap parameter A of the bipolaronic and mixed 
polaronic-bipolaronic structures is strictly nonzero. Moreover, the 
spectrum of the QEAM (which determines the phonon spectrum) lies in 
the interval ]0, 1 [ and contains 1. 

If the absence of electron-phonon coupling, the QEAM is the identity 
and the degenerate spectrum reduces to 1. Thus, this property proves that 
the electron-phonon coupling necessarily decreases all the eigenvalues of 
the QEAM except one. This phenomenon is called physically phonon 
softening. 

4.3 .  C o h e r e n c e  L e n g t h  

In structural models such as the FK model (e.g., see ref. 4), the 
coherence length of a stationary structure characterizes the spatial exten- 
sion of the perturbation due to a linear local perturbation. It is the inverse 
Lyapunov coefficient of the trajectory associated with this structure. 

The coherence length of a bipolaronic or mixed polaronic-bipolaronic 
state {uj} in the adiabatic Holstein model is defined similarly. The local 
minima {vi(h)} of the adiabatic variational form (15) with a local field 
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h at site m is the extremum of q~({o,}, ( a ~ } ) - h o m ,  which fulfills 
{re(0)} = {u~} and depends continuously on h in some neighborhood of 0. 
Thus, we have 

OV n -- hf~n, m (55a) 

By derivation with respect to h, we obtain 

P 0V n 0Vp Oh ' 
(55b) 

By definition, the linear susceptibility to the local field h at site m is 

OVp 
(55c)  

and we have the following result. 

P r o p e r t y  3. For  the Holstein model on an arbitrary lattice k 
restricted to an arbitrary finite subset ~ under conditions where Theorem 1 
holds, the linear susceptibility Zn, m (for n and m both in ~g) to a local field 
h at site m decays exponentially as a function of the distance d(n,  m). In 
other words, there exist two constants C2 and 72 < 7 which do not depend 
on ~, such that 

IZ ,ml = < c2 e-72;(n'm) (56) 

Inequality (56) also holds for the mixed polaroni~bipolaronic 
structures, but with different constants C~ and 7~ < 7' instead of constants 
C2 and 72, respectively. 

The coherence length ~ = 1/7 is the characteristic length associated 
with the exponential decay e x p [ - T d ( n ,  m)] of Z,,m for sites m and n far 
from each other. 

Proof. In order to fix the idea, let us consider the case of bipolaronic 
states. With definition (44a), we can write (55b) 

J~)~ = $m (57a) 

where ~m is the vector with components {6n, m}. The solution to this 
equation {Zi} =)~= 2~ 1J m is the column m of the inverse matrix ~ - 1 ,  

Zn, m = E [ ~  1]n,p(~p, r n = [ J ~  1]n,m (57b) 
pen  
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Our proof is performed when the modulus of the coefficients of ) fulfill 
inequality (32a) when Theorem 1 is applicable, 

[J~,/I ~ C exp[ -)~d(i, j ) ]  (58a) 

We have, under the conditions of Theorem 1 or 2, 

I[)11 oo ~< C~p(~,) < 1 (58b) 

where because the lattice ~_ is nonexponential (Definition 3), q~(7) is a 
smooth function of 7 for 7 > 0. When (58b) is fulfilled, the series 

,=  ~ )m (58c) 
m = O  

is absolutely convergent since ][)[12~< [I)]lo~<l. By setting Ji, j(1)=Ji, j, 
J,,j(0) = 6~,j, and J~,j(p), the coefficient (i,j) of JP which is thus defined for 
p~>2, 

J~,j(P) = ~ Ji, k ( P -  1)Jk, j (59a) 
k e n  

we obtain from (57b) 

)~i,j= ~ Ji, j(p) (59b) 
p E N  

For proving Property 3, we first prove recursively the existence of 
three positive numbers K 2, 0, and ~o such that 

]Ji, j(p)l<<.K2exp(-Op)exp[-cod(i,j)] forall p>~0 and (i,j) 
(60a) 

This inequality is fulfilled for p =  1 and p = 0  by choosing 0 < 0, 
0<co~<7, and K2exp(-O)>~C. Next, let us assume that (60a) is fulfilled 
for n = 1, 2 ..... p -  1 and let us prove it for n = p . We have from (59a) 
and (60a) 

]Ji, j(P)l ~ ~ IJi.k(P-- 1)l. IJk, gl 
k E N  

<<.K2C ~ e x p [ - 0 ( p -  1)] exp[ -cod( i ,  k)] e x p [ - T d ( k , j ) ]  
k e k  

(60b) 

822/67/3-4-19 
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The metric property 

d( i ,  k) ) d( i ,  j )  - d ( j ,  k) (61a) 

implies 

IJi, j(p)] <~K2exp[-cod( i , j )]exp(-Op)Cexp(O) ~ e x p [ - ( ? - c o ) d ( k , j ) ]  
k e k  

~</s exp[-cod( i ,  j ) ]  exp(-0p) C exp(0) ~0(7 - co) (61b) 

It suffices to choose 0 and co such that 

K2 exp [ - cod(i, j ) ]  exp( - Op) C exp(0) (p(? - co) 

~< K2 exp( - Op) exp [ - cod(i, j ) ]  (62a) 

o r  

C exp(0) q~(y - co) ~< 1 (62b) 

For  0 = 0 and ~o = 0, the first member of (62b) is strictly smaller than 
1. Since e ~ ~0(?- co) is a continuous function of 0 and ~o, we can choose 
0 > 0 and co > 0 such that (62b) is fulfilled. Consequently, (60a) is fulfilled 
with/s = Ce ~ Inequality (56) holds with 

and 

72 = co < ~ (63a) 

1 
C2 = Ce~ 1 _ e ~  (63b) 

A similar proof can be done for the mixed polaronic-bipolaronic states 
when Theorem 2 holds, but of course with different constants. QED 

This result gives information about the effect of small perturbations on 
the bipolaronic and mixed polaronic-bipolaronic states. It can be used for 
obtaining a nondifferential property about finite perturbations concerning 
changes in the bipolaronic or polaronic distribution. 

P r o p e r t y  4. For the Holstein model on an arbitrary lattice D_ under 
conditions where Theorem 1 holds for arbitrary finite subset 5, let us 
consider two bipolaronic structures {un} and {u'} characterized by two 
pseudospin configurations {~,} and {cr'~}, respectively, which differ by the 
presence or the absence of a unique bipolaron at site m, that is, we have 
an = a'n for all n r m and O- m :~ O'm,. 

Then, there exist two constants C3 and 72 (defined in Proposition 3) 
which do not depend on N, such that 

[u n - u'~[ < C3 exp[ - ?2d(n, m)] (64) 
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The same inequality holds for the mixed polaronic-bipolaronic states 
with constants C; and 7~, but then we have ~r n = a'. for all n C m and 
t O ' m  - -  O"ml  = 1/2 or 1. 

In other words, this result points out the corpuscular character of the 
bipolarons (or of the polarons), since adding or subtracting such particles 
(either a pair of electrons or a single electron) at an arbitrary site only 
modifies the close environment of this site (over a finite coherence length 
shorter than 1/72). Thus; the bipolaronic and the mixed bipolaronic- 
polaronic structures have the characteristic property of insulators 
mentioned in the Introduction. 

Proof. Our method of proof is called the secateur method (see the 
scheme of Fig. 4). This method consists in replacing the operator ~ defined 
in Section3.3 by an operator which continuously depends on the 
parameter ~ in the close vicinity of the given site m. We set 

F,,,j(~, m) = F*m(~, m) = ~Am, j (65a) 

F~,j(~, m) = A~,j (65b) 

for i C m  andj~am.  
With this operator and for 0 ~  ~ ~< 1, all the bounds found in the 

lemma and propositions are unchanged, so that Theorems 1 and 2 hold 
identically. We prove Property 4 in the following way. 

1. We continuously vary ~ from 1 to 0. The bipolaronic (or mixed 
polaronic-bipolaronic) configurations {ui(r depend continuously on ~. 

2. For ~ = 0, site m is totally isolated from the remainder of the 
lattice. We switch the pseudospin at site m, which has no effect on the 
atomic coordinates ui for i r  

3. We restore continuously ~ from 0 to 1 in order to get back to the 
initial model. The bipolaronic or mixed polaronic-bipolaronic configura- 
tions {u;} again depend continuously on ~.. An upper bound to the length 
of the path which has been run by the atom i, l u i - u ; I  < [u/(1)-u~(0)l + 
[u~(1)- u;(0)[, can be obtained using Property 3. 

For a given set {~r~} and each ~, the bipolaronic structure {u/(~)} is 
a solution of 

3ui = u , ( ~ ) + ~  c, v t ~uT({u,}, ~)12 = 0  (66a) 
v 
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Fig. 4. Illustration of the "secateur method": A parameter ~ is introduced in the kinetic 
energy operator/~(~, m) of the electrons. For ~ = I, /~(1, m) is the initial operator J, and for 

= 0, this operator is such that a certain region becomes disconnected from the remainder of 
the lattice. In the example shown in this figure, the single site m becomes disconnected from 
the remainder of the lattice. 

Since  /~(~, m )  is u n i f o r m l y  c o n t i n u o u s  a n d  d i f fe ren t iab le  wi th  r e spec t  
to  ~, {0u,.(~)/~3~} is de f ined  a n d  is a s o l u t i o n  of  the  e q u a t i o n  

o r  

~ O = q ~ ( { u . } ; { a v } ; ~ ) a u g ( ~ )  ~ a  a l~UV({u . ,} ,~ ) [2_O (66b)  

+ ~ui 0uj ~ + v 0~ 

Z Mi,,({.o}, 
J 

+ ~ a ~ ( 1 - a ~ , )  + - - '  ~* ~U~*A ~ + C C = 0  (67a)  
j,v,v' 

o r  

OUj__ E AS m( Si j'i m ~- Sm, i;j,i) E M i , / ~ - - ~ -  -- , , , ,  
J J 

-- E Z~m,j(Si, m;i,J "~- Sj, i;m,i) = r i  
J 

(67b)  
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with definition (42b). With inequality (42c), it turns out that 

{ Yi] < K2e-ed(i"~) (68a) 

where K z is some positive constant which fulfills 

g2~411311~g~ (68b) 

For the bipolaronic structures, the constant 7 in (68a) is given by 
Theorem 1. For mixed polaronic-bipolaronic structures, we find with 
similar arguments that the constant ? has to be replaced by the constant 
7' given by Theorem 2, and K~ by Ks Consequently, using inequality (56), 
we have 

#uj _ ~ ( ~ -  ' )j,k Yk (69a) 
ar k 

and 

a~ ~ K2 C2 E e-~P2~(J'k) e ~d(k,m} 
k~5 

<~ K2C2e-TZd(J'm) E e-(? ~2)~(k,,~) (69b) 
k~0_ 

Since ? > 72, there exists 

C3=K2C2 E e-(~-72}d(k'm) 
keL 

such that 

~uj C3 e--t2~(j,m) (70a) 
a~ ~<T 

The proof of Property 4 is now readily obtained. By varying ~ from ! 
to 0, we have 

C3 e--72d(j,m) 
lu~(1)-uj(O)l ~<T  (70b) 

Since for ~ = 0, site m is disconnected from the remainder of the lattice, 
we can switch O'rn to  another value without changing uj for j r m. From this 
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new bipolaronic configuration, we continuously restore the value of ~ to 
unity and find identically 

We find globally 

] ~bl;  C 3 ~/" " m" ~r ~ < ~ - e - n  t J, ~ (71a) 

l u j - u j l ~ l + ( 1 ) - u j ( O ) l + l u j ( l ) - u / ( O ) l ~ f 3 e  ~<j,m) (71b) 

which proves (64). A similar proof holds in the case of mixed polaronic- 
bipolaronic structures. QED 

Using the same secateur method, it is now possible to provide a proof 
for Theorem 3. 

Proof of Theorem 3. We prove that for any positive e and any given 
site i, there exists a ball 9~(p,) with radius the integer p, and center i such 
that for any finite subsets N and 5 "  which contain B~(p,) [that is, 
~i(P~) ~ ~ and Bi(p~ ) ~ 5*]  we have 

lui(5) - u~(~*)[ .N< e (72) 

[A ball ~ ( p )  is defined as the subset of sites j ~  l_ such that d(i ,  j ) ~  p.] 
Since the condition l im,_  ~ S ,  = B_ implies that for any site i 6 D_ there exists 
an integer Ni such that for n >~Ni, we have i t  ~g,; by choosing 

n>~Ni.p= Sup Nj 
J ~ ~i(P ) 

we have Bi (p)_  5 , .  Therefore, for n and n' >~Ni.p~ the Cauchy condition 
lu, .(Sn)-ui(5, ,)l  ~<e is fulfilled, which implies that l i m . . ~  ui(5,)  is 
uniquely defined. 

For that purpose, we use the secateur differently than for Proposi- 
tion 4. For a given integer p, we consider the set Ci(p) of bonds (m, p) cut 
by the surface of the ball 13~(p), that is, the set of neighboring sites m, p 
such that d ( i , m ) = p  and d ( i , p ) = p +  1. Sites m and p are nearest 
neighbors with m in the ball ]3;(p) and p outside the ball. There exist at 
most n~ x N~_(p) bonds in Ci(p). The "secateur" operator is defined as 

I 'm,p(~, i ,p)=I 'p*,m(~, i ,p)=~Am,  p for (m,p)~Ci(r) (73a) 

Km.p(~, i, p) = Am. p otherwise (73b) 

We consider the bipolaronic configuration {vj(r restricted to the 
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arbitrary subset 5 ~__ ]3i(p) which is a continuous function of ~ and such 
that for r = 1, 

{vj(1)} = {uj(~g)} for je~g (74a) 

By varying ~ from 1 to 0 we disconnected the inside of the ball Bi(p) 
from the outside and thus we have 

{vj(0)} = {uj(~,(p))} for j e  Bi(p) (74b) 

The derivatives {dvj(~)/d~} are obtained as in (66) and (67) and fulfill 

j 6r 

v* v' 
= - ~ ~v(1 - av,) ~u~ 7 ~  

(m, p)  e C i (p ) ,  v, v' Ev,,, - -  E,~ 

v'* v v'* X(~r /m Zl m, p ~[Jp q - tit; Ap, m ~ t ~ n ) q - - C C  ( 7 5 a )  

which yields with definition (68a) 

ovj Z Mk, 
J 

= -- 2 (ZJm, pSk,  m;p-~-Z~p, mSk,  p ; m ) - - C C = Z k  ( 7 5 b )  
(m, p) e Ci(p) 

Inequality (42a) implies with (Bl2a) the existence of a constant K4 
such that for (m, p) e Ci(p) 

ISk,..~k,~l ~< K4 exp[ - ~ d ( k ,  m)] (76a) 

and 

IZkl ~<4K4 Sup IAm, pl ~ exp[-Td(k, m)] 
m,p (p,m) e C 

<~ 4K4n~_ Sup IAm, pl ~ e x p [ - ~ d ( k ,  m)] (76b) 
m, d(i,  m) = p 

or using the metric inequality Id(k, i) - d(m,  i)l <~ d(k, m), 

[Zk[ ~< 4K4113{I o~ N~(p) exp[ - 7  [d(k, i) - p] ] (76c) 
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From (75b) and using (56), 

Oui 
k ~ n  

~< 4K4 Iz?ll ~ C2NL(p) ~ e x p [ - y 2 d ( k ,  i)] exp[ - 7  [d(k, i) - Pl ] 
k E k  

<~ KsNa(p) ~, Na(r ) exp( - 7 2  r) exp( - 7  [r - p[) = Fp (77) 
r = 0  

For proving that the last member of (77) goes to zero as p goes to 
infinity, we split it as Fp = $1 + $2, where S~ can be bounded using Defini- 
tion 3 of nonexponential lattices, as 

$1 = ~ Nt(r) exp(-v2r)exp(-v[r-P[) 
r < p / 2  

r < p/2 

We have for $2 

$2 = ~ Na(r) exp(-72r)exp(-Tlr-pl) 
r >1 p/2 

 .exp( 

which yields 

72 ) NL(r) ex p ~-r  exp( - -7 [ r - -p [ )  
r>~p/2 

(78a) 

(78b) 

Since the series ~0(V/2 ) = Z p  Nt(p)exp(-�89 is convergent for any 
positive y, Nz(p)exp(-�89 goes to zero as p goes to infinity. Conse- 
quently, both terms in (79a) goes to zero and limp ~ co Gp = 0. In addition, 
for any 0 < Y3 < 72/2 < 7/2, there exists a finite constant K6 such that 

0 < G p  < K 6 e x p (  - ~)3,0) (79b) 
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The inequality 

~?vi ~< Gp (80a) 
o~ 

implies with (74) 

Ivi(1)-vi(O)l=lui(S)-u,(Bi(p))t<~Go<K6exp(-y3p) (80b) 

Thus, there exists Pc such that for p >t Pc, we have 0 < G, < e/2. For 
any $ _~ B~(p~) and g*~_ Bi(p~), we have 

[Ui(~ ) - -  U i (~*) [  ~ [Ui (~)  - -  Ui(~i(jO))[ -1- [U i (~* )  - -  Ui (~ i (0 ) ) [  < ~ (80C) 

which proves (72) and consequently Theorem 3. QED 

This result proves that the infinite-size limit of finite systems is well 
defined and that the properties which are proven for arbitrary large system 
remains valid for the infinite system. For  the sake of simplicity, the proof 
of the following properties are done for arbitrary finite systems. 

4.4. B ipolaronic  and Mixed  P o l a r o n i c - B i p o l a r o n i c  S t r u c t u r e  
w i t h  a U n i f o r m  M a g n e t i c  Field 

We now analyze the effect of a magnetic field on the obtained 
structures. It is straightforward to prove that the domain of existence 
of bipolaronic and mixed polaronic-bipolaronic structures is at least 
preserved in the presence of a magnetic field, but our proof strongly 
suggests that this domain of existence should be extended. 

Electrons interact with a magnetic field within two terms in the 
Hamiltonian. The first one describes the orbital effect, which corresponds 
classically to the force on a moving electric charge due to the magnetic 
field. The second term describes the direct interaction of the spin of the 
electron with the magnetic field. 

4 .4.1.  M a g n e t i c  Orb i t a l  E f f e c t s .  We first consider the orbital 
effects of the magnetic field. (19'z2)'4 The transformation of the Hamiltonian 
under a magnetic field appears through gauge transformations of the elec- 
tronic wave functions with the form g t ~  ei~gt ]-group U(I)-] with a space- 

4 For the effect of a magnetic field within a tight-bindinig model see, e.g., ref. 20. 
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dependent phase e~. For  a tight-binding model with a magnetic field, A;,j 
is replaced by the transfer integral F~,j, which is a complex number, 

F~,j = At, j exp(iq0g, j) (81a) 

In the absence of a magnetic field, (oi, j has the form (oi, i = e i - e j  or 
equivalently the number of quantum flux ~b c through any arbitrary closed 
loop C = { i l , i 2 ,  i3 ..... i ,= io}  on the lattice 1_ ( d ( i p _ l , i p ) = l  for p = l  
to n), defined as 

~b e = ~  (%_ ~,~p (81b) 
p = l  

is zero. Introducing a magnetic field is equivalent to relaxing the condition 
that ~b e is identically zero. Physically, ~b e is precisely the number of 
quantum flux of the magnetic field through this closed loop 
C = { is ,  i2, i2 ..... in = io} in units hc/e, where h is the Planck constant, c the 
light speed, and e the electronic charge. 

If we assume that all nonzero A~, s are real, positive numbers, (72a) 
implies 

lIP/12 ~ 112112 (81c) 

By contrast, the supremum norms ]121[ ~ = 11/~11 oo and S~ = Sr [defined 
by (22b)] do not depend on the phases (0i, j and thus on the magnetic field. 
The theorems described above are unchanged when the electronic transfer 
integrals Ai, i are replaced by complex Fi, i (which also can be random or 
both) since for a given lattice 1_, the bounds t 3 and t; only depend on the 
upper bounds for the norms 112112, IlzTll++, and Sa [defined by (22b)], 
which are equal or smaller when a magnetic field is present. In summary, 
we have the following statement. 

P r o p e r t y  5a. Assume that the transfer integral couplings A,. s on the 
lattice 1_ are real, positive numbers. 

Consider only the orbital effects of an arbitrary magnetic field, 
uniform or not. 

Then Theorems 1 and 2 hold with bounds t3 and t; which are the 
same as without a magnetic field (Theorem 3 also holds). 

R e m a r k  2. The bipolaronic structures and the mixed po la ron i~  
bipolaronic structures do depend on the magnetic field but not necessarily 
in a smooth way. Indeed, the operator St is not a uniformly continuous 
function of a uniform magnetic field. Let us consider, for example, a two- 
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dimensional square alattice with sites n = (n~, n2) with a uniform magnetic 
field. The gauge can be chosen in order that 

F(nt,n2),(nl + 1,n2) = 1 

/~(nl ,n2) ,  (nl ,n2 + 1) = e2i~znl(b 

(82a) 

(82b) 

where ~b is the number of flux quanta per plaquette, which is proportional 
to the uniform magnetic field. The supremum norm of the derivative dF/d~ 
of/~ with respect to ~b, with elements 

and 

dF(~,~2),(~ ~ + x,~2)/d~) = 0 (82c) 

dF (nl, ~2), (~. ~2 + 1)/ d(} = 2inn 1 eZi~"1 ~ (82d) 

is obviously infinite. Therefore, the eigenenergies of Eq.(14a) are not 
expected to be smooth functions of the magnetic field as well as the 
operator St. The spectrum of the operator F(~b) has been numerically 
studied as a function of the magnetic field by Hofstadter, (22) who indeed 
found a nonsmooth behavior. He found a well-known Cantor set known as 
the Hofstadter butterfly. Therefore, we cannot conclude rigorously about 
the smoothness of the self-consistent bipolaronic or mixed polaronic- 
bipolaronic states {ui(~b) } as a function of the magnetic field ~b. We conjecture 
that at each site i, ui(~b) should depend continuously on ~b but should not 
be a differentiable function of ~b at rational values of ~b. 

R e m a r k  3. One can check by this example with a periodic square 
lattice and a constant magnetic field that inequality (81c) is strict except 
when q~c = 0 mod(1) for all closed loops e.  Consequently, in that cases the 
constrants ~ and 7' defined by (321b) and (C8b) increase, while the upper 
bounds for [I)lI~ given by (32c) and (10d) decrease. Otherwise, (22a) or 
(C3) yields smaller values for ~:' or z" for a given r, which thus extends the 
domain in t and z where z' (or ~")~< z. As a result, the bounds t3 and t; 
proposed for the existence of bipolaronic or of mixed polaronic- 
bipolaronic structures get necessarily larger. But in fact, our theorems give 
only upper bounds, which are not the best ones, and thus this remark does 
not prove rigorously that the domain of existence of bipolaronic or mixed 
polaronic-bipolaronic structures is extended. 

Nevertheless, this remark suggests an interesting point (which we plan 
to check numerically), which is that bipolaronie and mixed  polaronic- 
bipolaronic structures seem to be favored  by the existence o f  a magnetic field. 
Physically, the orbital effects o f  the magnetic f i e ld  on the electrons favor the 
formation of both bipolaronic and mixed polaronic-bipolaronic structures. 
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This conjecture might be connected with the fact that some experiments on 
the quantum Hall effect under a large magnetic field also seems to favor the 
localization of the electrons (see, e.g., ref. 2l). 

4.4.2. Magnetic Spin Effects. Let us now consider the standard 
contribution to the initial Holstein Hamiltonian (1) which comes from the 
action of the magnetic field on the electronic spins (~9'2~ 

HM = --gL#B ~ Uisi (83a) 
i 

We recall that #Bis a universal constant (the Bohr magneton) easily found 
in textbooks, H i is the magnetic field at site i, and si is the physical spin 
at size i. As a function of the fermion operators, the components of the 
electronic spin operator at site i are 

1 
s[ = ~  (c~ ci, + c~ ci~) (83b) 

i 
V = ( H  ci, - H (83c) 

1 
s~ = ~ (ci~ CiT - c/f ci+ ) (83d) 

(the eigenvalues of sT, s{, and s7 are _+ 1/2 or 0). For electrons with spin 
1/2, the Land6 factor gL is very close to 2. In order that Theorems 1 and 
2 hold with the same bounds, it is necessary to assume that the magnetic 
field is uniform, H i = H = const. (Note, however, that these theorems could 
be extended, but with different bounds. The modified proofs will bot be 
done here.) Suppose that the direction of the uniform magnetic field is 
along the z direction [used for describing the spin orientation cr in our 
definition (2a) for the electronic operators]; then the spin contribution to 
the electronic Hamiltonian (2a) due to the magnetic field is 

1 H HM = - ~ g # B  ~ (c,~ci,--c~ci,) 

l g # . H  E(c~cv t  c~c~)  (83e) 
2 

v 

Using the energy units (9a), Eo = 8g2/he)o, the spin correction to the 
Hamiltonian H of (9b) is 

121~ = - h  Z (c[f ci? - c,++ c,+) = - h  Z (c~ cvt - c~ Cv+ ) (84a) 
i v 
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with 

1 he~176 H (84b) 
h = ~ gL#B 8g2 

Since the magnetic field is uniform, /4M commutes with H and also 
with the adiabatic Hamiltonian /~r (12a), and there is a common base of 
eigenstates for/4~d and HM. However, the spin orientation degeneracy of 
the eigenstates of the adiabatic Hamiltonian H~a is raised by HM and the 
spin of the eigenstates has to be aligned in the direction z of the magnetic 
field. 

Property 5b. Property 5a holds identically when considering the 
electronic spin interactions but with a uniform magnetic field. 

But then, the (real) spin degeneracy in energy of the mixed polaronic- 
bipolaronic state is raised. 

The total energy q~H( { U~ }) of a given atomic configuration { u~ } of the 
variational form (15) corresponding to the Hamiltonian H~d+HM does 
not depend only on the electronic population factor {a~,} in (15c), but on 
the detailed electronic population according to both their eigenstate v and 
their spins. Two sets of pseudospins {a~T } and {a~} with art and a ~ = O  

r 1 or 1 are required instead of a single set la~} with a~ = g(a~, + a~+). Then, 
we have 

e.({u,}; e({.,}, {r Z  vTt (85) 
v 

At the anti-integrable limit (t = 0), the eigenstates of the Hamiltonian 
Had+ HM are characterized by two pseudospin configurations {~iT} and 
{ai~} with aiT = 0  or 1 and r = 0  or 1 and the spatial distribution of the 
spin configuration is {sZ}= {�89 (s;=-t-1/2 or 0). It could 
correspond to a spin density wave (SDW) in the case of ordering of {ai~} 
and {ai+}. According to Theorems 1 and 2, theses eigenstates persist for t 
small enough in the presence of the magnetic orbital orbital terms and yield 
bipolaronic and mixed polaronic-bipolaronic states. 

4.5. G r o u n d  S ta tes  w i t h o u t  and w i t h  a 
U n i f o r m  M a g n e t i c  Field 

For completing this set of exact results, we prove that for t small 
enough (or k large enough), the ground state of the adiabatic Holstein 
model is one of these bipolaronic or mixed polaronic-bipolaronic states. 
However, at the present stage, we cannot give the precise configuration 
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{ai} or {aiT} and {o-i+} which describes the bipolaronic or polaronic 
ordering of these ground states, which are generally not chaotic. 

Finding the ground state of the adiabatic Holstein model requires 
finding both the atomic configuration {ui} and the electronic population 
factor art and o-v~ which yields the absolute minimum of the variational 
form (84a). This ground state is well defined for any finite system. It may 
be not unique. For example, an incommensurate ground state is degenerate 
with respect to its phase. 

We now prove the following theorem. 

Property 6. In the absence of or for a small enough uniform 
magnetic field and for t small enough, the ground state(s) of the adiabatic 
Holstein model restricted to any finite subset 5 c D_ is a bipolaronic struc- 
ture as predicted by Theorem 1 (i.e., it is characterized by the pseudospin 
configuration which describes the distribution of the bipolarons). 

In the presence of a large enough magnetic field and for t small 
enough, the ground state(s) is a mixed polaronic-bipolaronic structure as 
predicted by Theorem 2. 

Proof. In the case with a uniform magnetic field, the ground state is 
characterized by the electronic populations factors {~v~ } and {av~ } and the 
atomic configuration { un }. In order to minimize the electronic energy with 
fixed {u.}, it is convenient to define two Fermi levels EFt and Ev, instead 
of one, fulfilling 

Ev~ - Ev~ = 2h (86) 

[-with h given by (83b)]. For the electronic eigenstates with energy 
Ev<~EvT [E~ is the eigenenergy of Eq. (14a) which contains the orbital 
terms due to the magnetic field], we have a~T = 1, and a~, = 0 otherwise. 
For those fulfilling Ev <<.Ev~, we have ~ = 1 and a~  =0.  Since we work 
with a fixed number of electrons, the global Fermi energy EF= 
�89 has to be fixed in order to obtain the chosen number of 
electrons in the system. 

Let us assume that {un} is the ground-state atomic configuration. By 
definition, any change in this configuration should increase the total 
energy. We use again the "secateur" method" which has been explained 
above. For a given site m, the operator r(~, m) is defined by (65). 

1. We vary ~ from 1 to 0. Unlike for the proof of Property 4, we do 
not let the configuration {u,} relax as ~ varies, but we fix {u,} to its set 
of initial values. Thus, the elastic energy ( 1 5 b )  is constant and only the 
electronic energy (15c) varies, since the eigenenergies given by (14) depend 
o n  ~. 
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2. When ~=0, site m is isolated. Then, we put the atom m in its 
"local ground state" at u" and calculate the energy gain. 

3. We vary ~ back from 0 to 1 while keeping the atomic position 
fixed. We then return to the initial Hamiltonian and we bound again the 
variation of the electronic energy. 

At the end, we bound from above the energy difference between the 
final configuration {u'n} and the initial configuration {un}, which are 
identical except for the position um of the atom m. This quantity has to be 
positive since {u,} is assumed to be a ground state. 

Step I. The set of N (real) eigenenergies is the set of N zeros of a 
polynomial of degree N, the coefficients of which are smooth, continuous 
functions of ~. Thus, when varying ~ from 1 to 0, each eigenenergy Ev(~) 
varies continuously. It may become degenerate for some values of ~. Then, 
in order to follow unambiguously each eigenenergy E~(~) as a function of 
~, these eigenenergies Ev(~) are put in increasing order and this order is 
preserved when ~ varies while the population factor av for each eigenstate 
v is kept constant. The electronic energy (15c) is thus a continuous function 
of ~. When the eigenenergy E,,(~) is nondegenerate, it is differentiable with 
respect to ~ and we have 

dE~( ~. ) df'( ~, m) 
d~ =(~P~[ d ~ [  ~p~) 

gt Am ~ gt (87a) 
n n 

which implies 

dEv(~) <<.2t ~ [~2*l .lAnml .l~ml (87b) 
d~ ,, 

When E~(~) is degenerate, we can choose the eigenstates ~v in the 
degenerate subspace in order that this formula holds for the right or the left 
derivative. Consequently, the electronic energy (15c) is left and right 
differentiable and both derivatives are bounded as 

dE~(~) 
<~ a~ d~ 

<~2t~ [Anm [ 20"vl ~rtv*[- [ ~kP~n ] 
n v 

~< 2t ~ [A,~ml ~< 2t il211 
n 

(88) 
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Since  I~electr ( {/'/i} ; { O-v } ) depends continuously o n  4, the  t o t a l  v a r i a t i o n  
V[~electr; 4:1 ~ 0 ;  {un}] of the electronic energy for ~ varying from 1 to 
0 is bounded as 

g[-I~electr( {Un })3 ~ =01 ~ 2t ll3ll oo (89a) 

S t e p  2. For ~ = 0, Um is an electronic eigenenergy. Therefore there 
exists v = Vm such that Ev,,(O)= Um with the population factor ~vm. The 
ground state of this isolated site m is obtained for Um= --arm" We consider 

t ! r the new configuration {un}, where Un=Un for n Crn and Um = --av,," The 
electron population factors ~ and a ~  are kept constant. This atomic 
displacement yields a variation V[O; ~=0 ;  {u~} ~ {u;}3 of the total 
energy which is the sum of the variation of the electronic energy E~m(0) and 
of the elastic energy at the isolated site m, 

v[o; {u~}' Urn --' U;.3~:0 
~1 I2 t 1 2 

2 2 i 2 �89 (89b) 
= 2 0 " V m  - -  f i r m  - -  g u m  - -  (~Vm b l m  = - -  

S top  3. We now restore ~ to its initial value 1. When ~ varies from 
0 to 1, the eigenenergies vary continuously while preserving their new order 
determined at ~ = 0 at step 2. The electronic population factor ~ is kept 
constant. The bound for the variation of the electronic energy is the same 
as in (89a), 

V[-Oelectr ( {/./; } )3 ~ - 1 ~ 2t 11311 o~ (89c) 

At the end of this sequence of transformations, only atom m has been 
moved. The corresponding eigenenergies have been changed, but no physical 
spin has been flipped, so that the spin energy (83e) in the magnetic field is 
unchanged. The variation V[O; {u~} ~ {u~,}]~_~ of the total energy (15a) 
obtained by changing Um into u~ is bounded by the sum of the three upper 
bounds in (89), which yields 

v[o; ~ = 1; Urn ~ U'3 

=O({u 'n } ) -O({u~} )<<.4 t l l 3 l l oo - � 89  2 (90a) 

Since we assume that {{u,}, {~}} is the ground state, the right member 
of (90a) has to be positive, which yields 

lu,. + ~ 1  ~< (at 1131100) "2 = r(t) (90b) 

for all m. 
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F r o m  now on, we distinguish two cases, o.v~ = 0 or 1 for all m, and 
0.~,~ = O, 1/2, or 1. 

Case  w i thou t  m a g n e t i c  f ie ld .  The first case is obta ined  in the absence 
1 of magnet ic  field h, which implies EvT = EFI in (86) and 0.~ = 5(0.~ r + 0.~,) = 

0.~ r = o.v; = 0 or 1 for all v. When  

v(t) + t 112112 -- (8t  11311 ~),/2 + t 112112 < �89 (91a) 

then condi t ion (90b) implies that  there exists a unique pseudospin  
configurat ion {on} = {o,.} such that  {u,} s g ( { o . , } ;  z(t)), and L e m m a  1 
applies. There  exists a new set of pseudospins  {0.;} with 0 . ' = 0  or 1 such 
that  

"~(t) 
E~ = - [1 - z(t)](o'v + e~) - ~ -  (91b) 

with 

[e~[ ~ 2 IlAH2t + ~(t) (91c) 
211 - z ( t ) ]  

However ,  for proving that  {u, ,}eg({o.n};  z ( t ) )  can be obta ined  as a 
fixed point  of the opera to r  St defined above,  we need to prove  that  the 
electronic popula t ion  factor  {o.v} fulfills the definition (16) of Section 3.1. 
This is equivalent  to proving that  0.'~ = ov for all v. Let us prove  this identity 
for t small enough. 

S t e p  4 .  Let us assume that  we do not  have 0.'~ = v for all v, and then 
choose v such that  o'~ r o v. Then  we have ] o ; -  o d = 1. As a consequence 
of L e m m a  1, there exist sites m such that  o'm = 0.'~. Let us choose such a site 
m and per form again the secateur me thod  in the form described just above.  
We per form again the t rans format ion  of the ground state described in 
step 1, but  at step 2 we insert a pe rmuta t ion  in the electronic popula t ion  
factor to relax m. The  occupat ion  number  of the electronic eigenstate v is 
changed f rom 0.~ to o.'v = o-m, while the occupat ion  number  of the state 
located at  Um is changed f rom o.'v to 0.~. Then, we move  a t o m  m from um 
to u ~ , = - 0 . ~  and set u " = u ,  for n r  The energy var ia t ion (89b) is 
replaced by 

vEqs; {u.}:  Um --' --0.~ ; 0.; '--' 0.~]~ =o 
," 1 tr 2 tt 

= - - ( g U m - i - o . v U m ) + ( o . v - - o . v ) E  v t . ~ U  m ..j_ o . v b l m  ) 1 2 t t 

1 2 2 �89 , 2 I , 2 ~ _  , = ~0.~ - 0.~ - + 0.~) + ~0.~ _ (0.~-- o~)Eu 

1 r 2 t 
= __  O v  ) __  ((7. v o . v ) t e v  _ _ 1  2 ~ ( o . v  - -  - -  ~ e  m (92a) 

822/67/3-4-20 
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We now perform again step 3, which restores ~ to its initial value 1 
while the atomic position u7 and the electronic population factors remains 
constant and the eigenenergies have same ordering. The total energy varia- 
tion between the two states is now bounded as 

0 <  V [  ~ '~  blm " ~  bl t ; atv ~--)" (T v ] ~ = l 

= ~ ( { ~ } ) -  ~({~.}) 

~<4t 1121] ~ ' __ ~ (0 -  v __ O.v )2  - -  ((7 v __ ~ v ) 8  v __12~,m2 

This condition implies, with (91c), 

(92b) 

When t goes to zero, the right member of (92c) goes to the negative 
value - 1/2 and for small enough t, this inequality (92c) cannot be fulfilled. 
Consequently, there exists t4 such that for t < t4 we necessarily have a'~ = o-~ 
for all v. Using the fact that 113112 ~< II~ll ~, we can check, for example, that 

1 1 
t 4 (93a) 

200 I1~11~ 

fulfills this condition. Since we have r(t) < 1/5 for t < t4, the ground state 
without magnetic field {u,} belongs to a certain set g({o-,}; 1/5). When 

t < Min(t3, t 4 )  = t 5 (93b) 

the operator S, has a unique fixed point {u,}, according to Theorem 1, in 
g({an}; 1/5), which then is a bipolaronic state. 

Case with magnetic field. In the case with a magnetic field, we may 
have a v=0 ,  1/2, or 1. Then, Lemma C holds for configuration ~un} when 
instead of condition (91a) we have 

r(t) + t ll JII 2 = (8t IIJII ~)1/2 + t ll JII 2 < �88 (94a) 

which yields a new pseudospin configuration {a~'} such that we have 

T t it E~= - [ 1 -  ( )](~v + ~ ) - - -  
~(t) 

(94b) 
2 

with 

I I~l lzt + v(t) 
levi ~< (94c) 

1 -~ ( t )  

21J~llzt+V(t) 1 
0 ~< 4t 113Jl ~ -~ (92c) 

211 - r ( t ) ]  2 
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We prove a;' = ~ for all v, with the same method as in step 4. If 
~ '  # my, its" - a~]/> 1/2, inequality (92b) holds and implies, with (94c), 

0~<4ttl3t1~o + k[3[lzt+Z(t) 1 (95a) 
2[1 - ~(t)] 8 

When 

t <  t~ = (1/512)(1/1131t oo) (95b) 

inequality (95a) cannot be fulfilled, which implies a~' = av for all v. Then 
the ground-state configuration {u,} belongs to a certain set g({a,};  1/8) 
with a ,  = 0, 1/2, or 1. According to Theoreml 2, it is the unique fixed point 
of St in g({a,};  1/8), i.e., a mixed polaronic-bipolaronic configuration, 
when 

t < Min(t~, t]) = t~ (95c) 

In order that the ground state {u,} be a mixed polaronic-bipolaronic 
configuration, the magnetic field has to be sufficiently large. We can bound 
this field by using again the secateur method. 

Estimation of  the critical magnetic field for a transition between a 
bipolaronic ground state and a mixed polaronic-bipolaronic ground state. 
This problem is studied in the regime t < t~ < ts, where both bipolaronic 
and mixed polaronic-bipolaronic states are proven to exist. 

First, we analyze the energy for breaking a bipolaron. We assume that 
the ground state contains both bipolarons and empty sites. Let us consider 
a site n occupied by a bipolaron, where Gn = 1, and an empty site m, where 
o-m---- 0. 

We use a "secateur" operator similar to (65) which disconnects both 
sites m and n from the remainder of the lattice. Thus, after step 1, the 
obtained bound for the energy variation is twice the energy variation 
calculated in (89a), 

I =, ] ~< 4t IL311 oo (96a) 

We transfer a single electron from the disconnected site n to the 
disconnected site m. For the new pseudospin condiguration {~;} we have 
~ ,  = a" = 1/2 and align the two real spins along the magnetic field. The 
variation of the configuration energy is the variation of the elastic and 
electronic energy plus the gain in the magnetic spin energy (84), 

V [ q ' ;  , 2 

= [ - '  _ , ~a , - ~ a  . ]  + [ - ~ a  m - ~ t u , .  - r  ~m) 2 + ~ m ]  --2h 

~< �88 -- 2h (96b) 
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We restore the conection of sites rn and n with the remainder of the 
lattice, which costs an energy variation again bounded as in (96a). Thus, 
the energy variation for breaking a bipolaron is bounded as 

1 VIII); {Un}:O'n---I'l;O'm 5]~= ~ ~< �88  2h + 8t [[z~[loo (97a)  

It must be strictly positive, since the initial state was supposed to be the 
ground state. Consequently, when 

h>~ k + 4tll3N ~ =hM (97b) 

and when the electron density per site is smaller than 1, the ground state 
contains only polarons and empty sites (o- n = 1/2 or 0). When the electron 
density per site is larger than 1, the ground state contains only bipolarons 
and polarons and no empty sites (~n = 1/2 or 1). In both cases, the number 
of polarons in the ground state is maximum. We call these states saturated 
mixed polaronic-bipolaronic structures. 

Second, we now analyze the energy for combining two polarons into 
a bipolaron. We assume that the ground state contains at least two 
polarons at site n and site m (where O'm~-O'n~-1/2) and do the same 
secateur method as just above for disconnecting sites m and n from the 
remainder of the lattice. Then, we transfer an electron from site m to n, for 
example, and restore the connection of sites m and n with the remainder of 
the lattice. The final energy variation is bounded as 

V[-q~; {u~}: o-n ~ 1; am --' 0]e= 1 ~< - 1 + 2 h +  8trl3[l~ (98a) 

which must be positive. Thus, when 

h~< 1 g - 4t 11311 o~ = hm (98b) 

the ground state only contains bipolarons and empty sites (except possibly 
a single polaron if the number of electrons is odd). QED 

In the regime where both the pipolaronic and the mixed polaronic 
bipolaronic states exist, finding the ground-state configuration {u, } is then 
equivalent to the problem of finding a pseudospin configuration {~n}. 
Exact results in the general case seem to be very difficult to obtain. 
However, we think that it might be possible to prove rigorously by using 
variations about the secateur method that in the 1D periodic adiabatic 
Holstein model the ground state is indeed a quasiperiodic structure of 
bipolarons, in agreement with numerical observations. Understanding the 
transformations of the bipolaronic ground states under a magnetic field is 
also a very interesting question in the interval hm < h < hM where we can 
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expect a complex phase diagram as a function of the magnetic field with 
nonsaturated mixed polaronic-bipolaronic ground states. 

5. C O M M E N T S  A N D  C O N C L U D I N G  R E M A R K S  

This last section is devoted to numerical analysis which illustrate the 
above results, and to comments, possible extensions, and physical applica- 
tions. We also set new problems to be studied in further work. We first 
report a numerical analysis done in one dimension only, which suggests 
that for a periodic lattice, the bipolarons in their ground state could have 
a well-defined shape. 

5.1. Transit ion by Breaking of Analyt ic i ty  (TBA):  
Effect ive Shape of  a Bipolaron (Numer ica l  Analysis) 

The values given for the physical quantities and for the bounds on the 
parameters must not be considered as realistic physical estimations. These 
quantities can be calculated accurately by numerical means. We report now 
the interpretation in terms of bipolaronic structures of early numerical 
calculations (3-6) confirmed and completed by those of refs. 25 and 26. The 
ground state {ui} of the one-dimensional periodic adiabatic Hostein model 
was calculated. It has been observed that, as predicted by the standard 
Peierls Fr6hlich theory, this ground state is indeed a CDW. For an 
irrational density ~ of electronic pair per site, it can be described with a 
2~-periodic hull function g(x) as 

ui=g(2kvi + ~) (99a) 

where k v = rc~ is the Fermi wave vector and :~ is an arbitrary phase. In 
addition, a transition by breaking of analyticity was found as in the FK 
model with the same critical behavior (within numerical accuracy). For 

= (3 -w/5 ) /2 ,  it was found that for k =  1 / ~ < k c ( ~ ) ~  1.58 +0.01, the 
hull function g(x) appears as a smooth function, while for k>kc(~), it 
exhibits many discontinuities. This observation suggests that, as for the FK 
model, the set of values taken by the full function g(x) could be a Cantor 
set. By analogy with similar observations in the FK model (which are 
supported there by rigorous results), it was suggested that g(x) could be 
analytic for k <kc(~) and purely discrete for k>kc(~).  Critical quantities 
which could be measured in the Peierls chain at this transition were found 
with the same critical exponents as those corresponding to the FK model 
and for the same incommersurability ratio. 

In addition, it was observed that the ground states (up to an arbitrary 
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phase shift) were the only minima of the variational form. By contrast, for 
k>kc(~), there are a large number of metastable states which are 
bipolaronic structures, as predicted by the present theory. In addition, 
when varying k, these metastable states exhibit complex cascades of 
bifurcations (26/ similar to those of the FK model. 

It was proven in the extended FK model (8) that the ground state can 
be described as a linear superposition of effective discommensurations. This 
exact result does not hold for arbitrary metastable configurations, but only 
for a set of a few special configurations to which the ground state belongs. 
Although we do not have any extension of this rigorous theory concerning 
the ground state of the presently studied model, it is interesting to check 
from our numerical data whether a similar property holds for the ground 
state of the adiabatic Holstein model. 

By analogy with the exact decomposition described by formulas (36) 
in ref. 2, we should expect that the ground-state configuration {u~} can be 
put into the form 

u. = ~ aibi+n (99b) 
i 

where {~} is a pseudospin configuration with e~ = 0 or 1 (the bipolaronic 
configuration), which is described by a period-1 characteristic function 

~rg = z(i~ + e) (lOOa) 

with 

Z(x) = 1 for 0 ~< x < ~ (100b) 

Z(x) = 0 for ~ < x < l  (100c) 

and {bi}, which represents the effective shape of a bipolaron. 
Using the deconvolution of formula (98b) for our numerical data {ui) 

with the pseudospin configuration (99), these effective bipolarons {bi} are 
found to be well defined and localized, and, as expected, in the regime 
k > kc(r onlg. 

Figure 5 represents the density p ; = - b i  of electron pairs corre- 
sponding to this "effective bipolaron" for several values of k. It is 
straightforward to prove that because of Eq. (18a) we have Zi P~ = 1. The 
value of b~ goes exponentially to zero as exp(-Ii]/~), where ~ is the 
coherence length of the bipolaronic structure. 

It is remarkable to note that for the ground state, although the size of 
these bipolarons could become much larger than their distance one from 
each other, a well-defined shape can be defined. Since the effective shape of 
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Fig. 5. Effective electron density {Pi} versus i in the one-dimensional adiabatic Holstein 
model for ~'= (x/5-1)/2 for 1/x /~=k=2 , 1.75, 1.65, and 1.6 [kc(~)~ 1.58]. This bipolaron 
is well localized far above the TBA and spreads out when approaching kc([ ) from above. It 
is undefined for k < kc(~') (for an infinite system). 

these bipolarons takes into account their relative environment, it depends 
not only on the electron phonon coupling, but on the electron pair density 
(band filling). 

When k goes to k,,(~) from above, the size ~ of these bipolarons 
diverges (with a critical exponent which is, for example, v ~ 0.9874 when 
is a noble number, see ref. 6). For  k ~< k<((), in principle formula (99) could 
yield the effective shape of an effective bipolaron {Pi}, but this is highly 
sensitive to the size of the system which is analyzed. In fact, the electronic 
density pi is rather uniformly distributed over the whole system, so that for 
a large system, Pi goes to zero since Z~P~= 1. Within our definition, the 
bipolarons which are not localized in the real space do not exist. 

As mentioned in ref. 2 for the FK model, when k > kc(~), these effec- 
tive bipolarons can be used analogously to the effective discommensura- 
tions for describing the weak disorder around the ground state. These 
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choatic bipolaronic configurations are described with an "exponentially" 
good accuracy by formula (99b) where the sequence of pseudospins {ai} 
are slightly random (see the end of ref. 2 and refer to refs. 27 29 for a 
precise definition of "slightly random" for an incommensurate structure). 
Thus, the knownledge of the characteristic parameters of the effective 
bipolaron turns out to be physically meaningful for describing the low- 
temperature behavior of this incommensurate CDW. 

It seems clear that this property does not hold for random lattices, but 
an interesting question remains: Could the concept of effective bipolaronic 
shape be extended to periodic d-dimensional lattices? Or is it restricted to 
periodic one-dimensional lattices? 

5.2. Possible Extensions of the Mathemat ica l  Me thod  

This Holstein model has been chosen in this paper for the sake of 
(relative) simplicity. We now discuss how the technique used here for 
proving the existence of bipolaronic and polaronic states could be extended 
for larger classes of models, thus anticipating on future work. The required 
conditions on the considered models should be the analogue of the condi- 
tions (36~ for uniform hyperbolicity in symplectic dynamical systems. Indeed, 
it is well known by specialists in this field that uniform hyperbolic sets are 
robust under "perturbation." On this basis, we expect the stability of 
polaronic and bipolaronic structures in coupled electron-phonon systems 
when there exist both a nonvanishing gap in the phonon spectrum and a 
nonvanishing gap in the electronic spectrum between the occupied and the 
empty states. 

In wide generality, we expect that Theorem 1 for the existence of 
bipolaronic states extends to adiabatic electron phonon models with 
several phonon branches fi with dispersion and several electronic bands c~. 
These models are tight binding on an arbitrary nonexponential lattice and 
can be written as the sum of three terms as in (1), which have the following 
properties. 

1. There exists a well-defined anti-integrable limit with a set of stable 
eigenstates ~ (H k =0) described by pseudospin configurations {ai}. 

2. There is a subset ~'___cg of eigenstates with a nonvanishing gap 
between the occupied electronic states and the empty electronic states. 

3. The QEAM (which determines the bare phonon spectrum) must 
be invertible. Note that in principle our method also works when this form 
is not positive. However, the positivity condition should be required for 
ensuring the physical stability of the bipolaronic and polaronic structures. 
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4. The electron-phonon coupling term Hep must be a form which 
depends linearly on the electron densities ni~ , and ni~;, 

Hep = E gicxa({Ig~n} )fli~xa (101a) 

Then, we claim that our theory can be extended without any essential 
changes provided that the electron kinetic part H ,  is a self-adjoint f o rm  o f  
degree 2 which only depends on fermion operators. Several coupled 
electronic bands ct can be considered. The kinetic electron Hamiltonian 
H~ has the general form 

r r + Hk = --t ~ A(i, ~, a; j, ~ , a )c i .... ~)~, ~, 
(i,j),a,a' 

(101b) 

where A(i, ~, a; j, cd, a') is the transfer integral between nearest neighboring 
sites i and j on the nonexponential Iattice and between bands e and cd [we 
assume IA(i, ~, a; j ,  ~', a')l < 1]. As in the adiabatic Holstein model, the 
orbital effect of a magnetic field can be included by an appropriate choice 
of the phase of the complex transfer integrals A(i, ~, a; j ,  ~', a'). 

In the absence of spin-orbit coupling, that is, when A(i, ~, a; j ,  ~', a') 
= 0 for a r a', proof for the existence of mixed polaronic-bipolaronic states 
can also be obtained for pseudospin configurations in ~' ,  but then the 
existence of two nonvanishing electronic gaps in the energy at the anti- 
integrable limit instead of one is required. The first gap lies between the 
doubly occupied states and the singly occupied states, and the second one 
between the singly occupied states and the empty states. 

Spin-orbit coupling can be also included in (101b) by considering 
transfer integrals A(i, ~, a; j ,  c(, a ' ) r  for a C a ' .  Then we must require 
extra conditions for time reversal invariance. When spin-orbit coupling is 
present, the degeneracy between spin T and ~ is raised without a magnetic 
field. The electronic eigenstates mix T and $ spin states, so that we cannot 
define separately an electronic population factor for the spins T and ~. Our 
techniques allows us to prove that only the bipolaronic states are robust 
under perturbations by H k. The behavior of the mixed polaronic- 
bipolaronic states is questionable when a spin-orbit coupling is present. 

For the proof of this conjecture, we propose to study the fixed points 
of an operator defined similarly as St in (18). Giving a set of atomic 
positions {u{} and an electronic population factor with a cutoff in the 
electronic gap, the electronic eigenequations determine a set of electronic 
densities {p{'~ Then the extremalization equation of the variational form 
which relates implicitly the atomic positions to the electronic densities is 
used for determining atomic coordinates {v~} from {p~'~}. The extended 
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operator S~ is defined by {v~} =S,({u~}) and its fixed points are extrema 
of the variational form of the mode. However, only a subset ~ '  _c qf of the 
anti-integrable states may fulfill the conditions 2 and 3 which we just 
proposed for extending our method. 

5.3. Pruning Condi t ion 

Only the configurations belonging to this subset ~ ' _ ~  should be 
stable under perturbation by the electronic kinetic operator. This restric- 
tion is called "pruning the set of pseudospin configurations." We have seen 
above that for the adiabatic Holstein model no pruning condition was 
necessary. 

It is of pedagogical interest to analyze an example where thus pruning 
condition become effective. We consider a variation of the one-dimensional 
Holstein model obtained by replacing only the elastic energy (15b) by 

1 2 C 
(~elast({b/i}) = 2.  5 ui q- 5 (/di+ 1 --  u/)2 (102a) 

l 

For a given distribution of pseudospin {ai} with a i =  0 or 1 at the 
anti-integrable limit, we have to minimize with respect to {ui} the varia- 
tional form 

1 C 2 1 
~ ) e l a s t ( { U i } ) ~ - 2 r Y i U i = ~ i  " - ~ a 2  (102b) 

For C > 0 ,  the form (102b) always yields a nonvanishing gap for the 
phonon spectrum, since this quadratic form is strictly positive. Note that at 
the anti-integrable limit, due to the dispersion of the bare phonon branch, 
the interactions between the bipolarons and the polarons do not vanish, 
unlike for the initial Holstein model. The ground-state model of this model 
is not degenerate at the anti-integrable limit. At this limit and close to it, 
its structure essentially depends on the phonon properties and very little on 
the shape of the Fermi surface. 

The pruning condition requires that at the anti-integrable limit, there 
also exists a nonvanishing gap c for the electronic spectrum. Therefore, for 
any pair of sites i and j such that ai = 0 and aj = 1, we have u~ > u: + c, 
since the set of eigen values {Ev} is also the set of {-u~}. The extremaliza- 
tion of (102b) yields 

Ui + 6i + C ( 2 u i -  Ui+ 1 -- Ui -  1) = 0 (103a) 

and 

ui = - K ~  ~lnlai+ n (103b) 
n 
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with 

and 

2 = �89 + C -  (C 2 + 4C) 1/2] (104a) 

1 - 2  
K -  (104b) 

1 + 2  

The pruning condition becomes 

C 
1 -  ~ 21"l(cxi+~-aj+n)>~5 (105a) 

n~0 

For 2 > 1/3, there exist pseudospin configurations which do not fulfill this 
condition. It can be fulfilled by requiring that the sequence of pseudospins 
{a,} be made of blocks of equal spins with minimum length N, where N 
will be chosen in an appropriate way. Since each pseudospin equal to 1 
belongs to a block of consecutive pseudospins equal to 1 with minimum 
length N and since each pseudospin equal to 0 belongs to a block of 
consecutive pseudospins equal to 0 with minimum length N, we find the 
following inequality when o-i = 0 and ~j = 1: 

n~0 n#-0 

(22 1-,,~ N -  1"~ 1--,~N--1 )LN 
> t l -  \ 1 - 2 - ) ~  1 - ] - - f ~  / + 2  1 - 2  1-21-----2~ (105b) 

For N large, the right member of (105b) goes to 1. Thus for c < K, N can 
be chosen in order that the pruning condition (105a) is be fulfilled. 

Consequently, we prove for this example that given this block size 
condition, there exist infinitely many pseudospin configurations which 
fulfill this pruning condition. The entropy of this subset is finite. When 
). < 1/3 there exists c >  0 such that the pruning condition is fulfilled for 
N = 1. Then the pruning condition is fulfilled by all pseudospin configura- 
tions and can be discarded. In fact, the pruning condition depends sharply 
on the model. 

Physically, when there are local arrangements of bipolarons which are 
already unstable at the anti-integrable limit (depending on the interactions 
between the bipolarons), this pruning condition allows one to discard these 
nonphysical configurations. The remaining set of pseudospins determines 
the "robust" bipolaronic configurations under the quantum electronic 
perturbations. After pruning, the stability domain depends on the 
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pseudospin configuration. When t is growing, the instability of each 
bipolaronic configuration often occurs by the merging of the local minima 
with other extrema. As for the FK model, we have complex cascades of 
inverse bifurcations which prune out progressively the set of bipolaronic 
configurations (as observed numerically in ref. 26). At these bifurcations, 
the phonon matrix (QEAM) becomes gapless. 

5.4. More  Metastab le  States: Breaking of a Single Bipolaron 
(or of  a Polaron) into a Finite Number  of Pieces 

Since we only found local minima for the variational form, these 
cascades of bifurcations necessarily involve extrema which do not exist at 
the anti-integrable limit. Clearly, as for the FK model, this anti-integrable 
limit is highly singular, although it is possible to use it for perturbation 
expansions. The adiabatic Holstein model exhibits in fact many metastable 
states other than those generated at the anti-integrable limit. This problem 
appears to be very complex in general. We only briefly describe a simple 
example proving the existence of these extra metastable states. 

Let us consider a single bipolaron in the one-dimensional Holstein 
model (see ref. 5). In that case, there is only one occupied electronic 
eigenstate { ~u n } in the whole system. Equation (18a) yields 

u n =  - I  ~U~l z (106a) 

with 

which implies 

- tgtn+ 1 - t~u_ ~ + un ~u = E~U (106b) 

- t~n+t  - t ~u,_ 1 - I ~ ]  2 7t~ = ESPn (106c) 

This equation can be solved recursively for real gtn by using the two- 
dimensional area-preserving map 

E gt _ 1  3 (107a) 
~ + ~ = - t  n t g t n - g s n - i  

~n = ~u (107b) 

which is obtained from the generating form 

( ~ u , + l -  ~ , )  - ~ ( E + 2 t ) ~ u 2 - ~  ~ u4 (107c) 
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Since we must have 

I gt, J2 = 1 (108a) 
/7 

the trajectory associated with the solution of (107c) and generated by 
the map (108a) has to be a homoclinic trajectory to the fixed point 
(~n, ~g,_~) = (0, 0) = F. 

Indeed, for E < - 2 t ,  this fixed point bifurcates and becomes hyper- 
bolic without reflection. In that case, such a map (which is similar the well- 
known H6non map) is a typical example exhibiting a "horseshoe" with 
infinitely many homoclinic trajectories. Since this map (107) has an anti- 
integrable limit for t = 0, it is convenient to note that this result can be 
easily proven for E < 0 and a small perturbation t r 0 with the same techni- 
que as in ref. 1. Then, the chaotic trajectories of the horseshoe can be 
obtained by perturbations of the anti-integrable trajectories. For t = 0, they 
are given by {~u.}={a.x/-L--E}, where {~rn} is an arbitrary coding 
sequence with cr.=0, - 1 ,  or 1. The coding sequences {a~} with bounded 
support (that is, such that ~r.:#0 for only a finite number of values of n) 
yield after perturbation for t--#0 the homoclinic trajectories of the fixed 
point F =  (0, 0) since the corresponding trajectories converge to F both for 
n going to + oe and - oc. If one requires that the pair of electrons be in 
its ground state with respect to the lattice distortion, the sequence { ~ .}  
has no node, which requires that ~,, = 0 or 1 for all n (or equivalently by 
symmetry a ,  = 0 of - 1  for all n). 

Since there exist homoclinic trajectories associated with any sequence 
{a,} with bounded support for t small enough, let us consider {~b,~} one of 
these homoclinic trajectories. The series 

n 

is convergent but not necessarily 1. Giving such a solution {~bn}, the solu- 
tion { g t}  = {(b,/x/~ } fulfills 

t gt+~ t E 
- ~  - ~  ~ , _ ~ -  r ~nl2 ~/7 = ~  ~n (109) 

It determines a bipolaronic configuration for t'= t/S and E ' = E / S .  
This bipolaronic configuration can be stable or unstable. The ground-state 
bipolaronic configuration is obtained for a coding sequence such that 
a ,  = 0 for all n except for a single value n o of n where a,0 = 1. When there 
are several values of a~ which are not zero, the corresponding bipolaronic 
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configurations have a larger energy and spread over several sites in the 
lattice. It can break into several pieces, which could be far apart, depending 
on the number of blocks where ~n#0 in the coding sequence {crn}. Such 
structures were found numerically. (s) 

The existence of such bipolaronic configurations, which is physically 
rather surprising, is essentially due to the discreteness of the lattice. This 
fact is responsible for the existence of infinitely many homoctinic points for 
the associated map, which means physically that the bipolaron can break 
into several pieces pinned to the lattice and which could be in a metastable 
equilibrium. 

If we make an estimation of the minimum energy required for 
breaking a single bipolaron (those obtained at the anti-integrable limit) 
into two pieces which are far away, the energy involved is smaller than but 
comparable to the energy required for annihilating this bipolaron (that is, 
for making the system without atomic distortion and an extended constant 
electronic wave function). This phenomenon could play an important role 
in some physical processes because it yields many extra excited states close 
to the gap edge. Physically, these states seem to have some similarities with 
impurity states. However, the density of these states has not been studied. 
However, it seems reasonable for the application of this theory at low 
temperature that these excited states be neglected in a first approach and 
that we restrict the phase space to only bipolaronic states obtained by 
expansion at the anti-integrable limit. 

5.5. Models without (Trivial) Anti-integrable Limit 

It is also worthwhile to describe situations where at the present stage 
of our studies the methods used for proving the existence of chaotic 
bipolaromic and mixed polaronic-bipolaronic states cannot be extended in 
the present form. 

The first case occurs when the anti-integrable limit is not obviously 
defined. For example, in the adiabatic one-dimensional SSH model (Is) 

HssH = -~ [I -%(u,+~-u,)]cL~,~c~,~+CC+ ~ �89 2 (110) 
i ,  cr i 

the coupling with constant 2 between the phonons and the electrons occurs 
via the transfer integral. For small ~., the Peierls electronic instability then 
produces a CDW which is called a bond order wave (BOW). The limit 
2 ~ 0% which is not an anti-integrable limit, cannot be used for starting 
expansions in 1/L Nevertheless, although our mathematical method does 
not work, numerical calculations C3-6) suggest the existence of chaotic 
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metastable states which are random distributions of "bond bipolarons" for 
2 in some interval. In that case the bipolarons are nothing else than 
chemical bonds. This problem is technically more difficult than the case of 
the Holstein model, but on the basis of numerical observations, we believe 
that the existence of bipolaronic and mixed polaronic-bipolaronic states 
should be provable and that the physical behavior is very similar to that 
of the adiabatic Holstein model. 

Another case where the anti-integrable limit is not defined concerns 
continuous models. Indeed, the above theory holds because of the existence 
of an underlying discrete atomic lattice. This is not an approximation 
because in any real solid (crystal, incommensurate structure, quasicrystal, 
amophous structure) the field of atomic displacements ui in indeed a dis- 
crete function of i, since i represents the labeling of the atoms. The assump- 
tion, which considers the field of atomic displacement u(r) as depending 
continuously on the space r instead of the discrete variable i, is thus an 
approximation. This is often introduced when working with the Fourier 
transform of the atomic and electronic operators and linearizing the 
electronic energies close to the Fermi surface. 

The practical advantage of the continuum approximation is to gain a 
certain amount of "integrability" and to work out explicit formulas and 
quantitative results. It is well known that to be integrable, a model requires 
special conditions which are convenient for calculations but are physically 
exceptional. A convenient consequence of such an approximation (which 
turns out to become a severe flaw) is that the "anti-integrable" limit no 
longer exists in the model. This approximation washes out the model of 
all possible metastable chaotic bipolaronic and polaronic states, which, 
however, should be essential for understanding the physical behavior of the 
model. Such models have specific properties which either do not represent 
real physical behavior or must be interpreted carefully. 

Let us also mention the existence of a tight-binding model which has 
been especially constructed for being integrable. This model is related to a 
Toda lattice problem with solitons. It exhibits only commensurate or 
incommensurate structures with gapless phonons (phasons) and no chaotic 
states. It is clear that this peculiar model does not exhibit any anti- 
integrable limit. (38) 

5.6. E l e c t r o n - E l e c t r o n  I n t e r e c t i o n s  + E l e c t r o n - P h o n o n  
I n t e r a c t i o n s  w i t h i n  a M e a n - F i e l d  M o d e l  M a g n e t i s m  

The introduction of a direct electron-electron interaction breaks down 
our exact theory because up to now, it has not been possible to treat 
exactly the many-body electronic Hamiltonian. However, it turns out to be 
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possible to take this interaction into account within a standard mean-field 
approximation. 

Let us consider, for example, the adiabatic Holstein model with an 
extra Hubbard term with constant U in the energy units of (9a), 
E o = 8g2/hcoo (note that U is not measured in units of the electronic 
bandwidth as usual, but in units related to the electron phonon coupling). 
Then the Hamiltonian (12a) becomes 

' i 2  

t 
~-f l i~)Ui] '~-U2ni~f l i ,~--2  2 Ci+,o'Cj, ff (111a) 

i (i,j),~r 

Although the anti-integrable limit is well defined, the term ~n~Tn~+ 
does not allow us to use the nice properties of one-particle Schr6dinger 
operators as ~ defined by (14). This term can be treated within a standard 
mean-field approximation. We introduce a Hamiltonian with two 
parametric fields {v~,t} and {v~,+} 

[ ~ I m f ~ I ) i , ~ r n i ,  a--  2 Z Ci+aCJ, a ( 1 1 1 b )  
t,~7 (i,j),a 

and minimize with respect to {u~}, {v~,t}, and {v~,~} the mean-field varia- 
tional form 

1 

1 
q- 2 2 [-(Ui- Vil,)(l'lit ) + (hi i -- T)i+)(ni~ ) )  

i 

1 
(112a) 

where E~,~({v~,~} are the eigenenergies of the Schr6dinger equation 

. . . .  , = (112b) 

and the electronic densities are given by 

, I ( l t 2 c )  
v 

av,~= av, T or a~, 1 are the population factors for the electrons with spins T 
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or ~, respectively. We can minimize this form with respect to {u~}, which 
yields 

1 u,= - 5((ni~ > + (ni~ >) (113) 

and allows one to eliminate this phonon field {u~}. The variational form 
(112a) becomes 

8 i (<ni~>+ < n i ; > ) 2 + U ~ i  <niT><ni+> 

_1_2 1 2 ~ (v'T<n~t>+v~+(n~J'>)+2 ~ ~r~'~E''~176 (114a) 
v, (7 

Minimizing over {v~T } and {v,+} yields 

vi~ = 2U<ni, >-- �89 (n,~: ) + (ni, >) (114b) 

v~ = 2U(ni,: > - �89 ) + (ng~ >) (114c) 

and 

1 
(n~,T > - I- -v~. T + ( 4 U -  1) v,,~] (l15a) 

4U(1 ~ 2 g~  

1 
(n~'T> 4 U ( 1 - 2 U ) [ ( 4 U - 1 ) v ~ ' r - v i ' + ]  (l15b) 

We now change the relation (112c) between <n~,~> and {v~,~} and 
substitute (115) in the variational form (113a). Thus, we obtain a new 
variational form, 

1 ~ [v~T + v2 1 
-16U(1-~_ 2U ) ,s + 2(4U-1)v, ,vi+]  + ~ 2  ~r~,~E~.~({v,.~}) 

7, ff 

(116) 

which is not identical to the variational form (114a), but which has the 
same extrema. However, in this transformation the nature of the extrema 
may be changed. For example, a minimum may be replaced by a 
maximum. 

For a given pseudospin configuration describing the electronic popula- 
tion {ai.~} with ~ri,~=0 or 1, at the anti-integrable limit ( t=0) ,  {v~.~} is 
given by (l14b) and (114c), where a~.~ = (n~.~> = 0 or 1. The conditions for 

822/67/3-4-21 
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developing a theory similar to the one described here are fulfilled when 
U r  U r  1/2, and U r  +o% since at the anti-integrable limit: 

1. The quadratic form corresponding to the phonon fields is non- 
degenerate (i.e., the QEAM is invertible). 

2. There exist nonvanishing gaps between the electronic states which 
are occupied and empty. More precisely, the electronic eigenenergies given 
by (l12b) can take four values: 

0 and 2 U -  �89 for the empty states 

- �89 and 2 U -  1 for the occupied states 

Thus, we can define as in (16) or (17) the electronic population factor 
crv = z(Ev) by a simple characteristic function Z(x). When 0 < U <  1/2, )~(x) 
is defined as 

1 1 Z ( x ) = l  for x < - ~ + U  and Z ( x ) = 0  for - 5 + U < x  

(l17a) 

When 1/2 < U, Z(x) is defined as 

l and U - l  2U - 3  X(x) = 1 for x < - ~  5 < x <  

1 )~(x)=0 for - l < x < U - ~  and 2U-]<x  
(l17b) 

When U <  0, 

1 X ( x ) = l  for x<2U -3  and U - � 8 9  

Z ( x ) = 0  for 2U-3<x<U- �89  and 1 - -  ~ < X  

(117c) 

A theory similar to the above allows one to prove that there exists 
t(U) such that for t < t(U), there exists a mixed polaronic-bipolaronic 
structure {vi,~(t)} which depends uniform continuously on t and such that 
{vi,~(0)} fulfills (114c), where a~,~ = (n~ ,~)=0  or 1. Although the stability 
analysis of these states [with respect to the variational form ((114a)] has 
not been performed, we do believe that the bipolaronic and polaronic 
states are stable for t small enough. 

The cases U = 0 and U = 1/2 require a particular treatment. For  U = 0, 
the two phonon fields {viT} and {vit} reduce in fact to a single phonon 
field, since ( l l4b)  and (114c) yields v~, = v~+ for all i. Then, the quadratic 
form in (116)just  becomes Z~ 1 2 5v~, and we get back to the problem solved 
above. 
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For U =  1/2, we get v; T = -vi+ for all i. We also get a single phonon 
field, but the signs of its coupling constants with the electrons with spin T 
and + are opposite. U =  1/2 is just the value at which the energy of a 
bipolaron is equal to the energy of two polarons at the anti-integrable 
limit. For U >  1/2 the ground state is obviously magnetic at the anti- 
integrable limit and remains magnetic close enough to this limit within this 
mean-field theory. 

For U =  _+o% the first term in the variational form (116a) disappears 
and limv~o~t(U)=O. Our theory is not applicable to the mean-field 
Hubbard model (without electron-phonon coupling). 

As a result, this calculation suggests that the role of the electron- 
phonon coupling is essential for the stabilization of magnetic structures 
which are due to direct electron-electron interactions. These magnetic 
structures do exist for U >  1/2. Further work is necessary to understand 
better the consequences of this approach. 

Mean-field approximations are widely used under various forms for 
solving electronic models. A method which belongs to this class consists in 
introducing n flavors for the electrons i, a (a = 1, 2,..., n) with n large. The 
physical situation corresponds to n = 2 since the spin of the electron is 1/2. 
For n large, the model becomes exactly soluble by a mean-field calculation. 
Then 1/n expansions are often performed in order to get some insight into 
the physical case n = 2. The theory presented here suggests that this limit 
of n large might be much more complex than expected due to the existence 
of these bipolatonic and polatonic states and that a 1In expansion may 
become wrong at least for discrete lattices. 

5.7.  Q u a n t u m  L a t t i c e  F l u c t u a t i o n s  

An important question which would be probably asked by the reader 
concerns the validity of the adiabatic approximation. In other words, could 
the quantum lattice fluctuation destroy the polaronic and bipolaronic 
structures (at 0 K)? 

We believe that they do destroy in principle most of these structures. 
This fluctuation problem should involve not only the polaron or bipolaron 
ordering, but also the dimensionality of the model. However, this physical 
question must bed asked differently in more physical terms: What is the 
lifetime (at 0 K) of a bipolaron or a polaron at a given site? In standard 
physical situations, due to the fact that the atoms are rather heavy particles 
compared to the electrons, estimation of this lifetime (9 12) yields values 
which could easily become much longer than the age of the universe! Then 
for such real systems, the quantum lattice fluctuations are irrelevant, that 
is, absolutely negligible compared to other sources of fluctuations and 
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especially the thermal fluctuations. This situation is typically found when 
the size of the bipolarons and polarons (the inverse coherence length 
defined in Section 5.3) is comparable to or smaller than the lattice spacing. 

When the size of the bipolarons or of the polarons diverges, the 
validity of the adiabatic as well as the Born-Oppenheimer approximation 
is no longer granted. We found for the adiabatic Holstein model the 
following criterion given by formula (12) in ref. 12 concerning the phonon 
softening 2 <  1, which is the smallest eigenvalue of the phonon matrix 
defined in (50). When this criterion is not fulfilled, the Born-Oppenheimer 
approximation is not valid, because of the existence of nonnegligible 
"anti-adiabatic" terms in the Hamiltonian. The role of the dimensionality 
d of the model which appeared in the initial formula was due to the fact 
that we made exact bounds. Physically, we expect that it can be dropped 
in the formula. Thus, this criterion becomes in our units 

)~ 
2,/-r 1 (118) 

where fi is given by (10b). Physically, the phonon softening is the ratio of 
the smallest phonon frequency to the bare phonon frequency. For small t, 
the phonon softening 2 is close to 1. It goes to zero at the bifurcations of 
the bipolaronic or mixed polaronic-bipolaronic configuration or at the 
TBA for a bipolaronic CDW. When the phonon softening goes to zero we 
suggest that the system becomes unstable against quantum lattice fluctua- 
tions. We speculate that this instability occurs by the appearance of 
(tunneling) Cooper pairs. Therefore, the gound state of the system could be 
superconducting. However, with physical parameters t and fl, it can be 
checked that the phonon softening which is acceptable with criterion (118) 
can be very small, typically 1 0  - 2  o r  smaller. This fact is compatible with 
the few experiments in real materials which did exhibit phonon softening, 
since these experiments also show the existence a small (strictly) nonzero 
residual gap compatible with criterion (118). These points will be studied 
in more detail in further publications. We conjecture as follows: 

Taking into account quantum lattice fluctuations (even very small) at 
0 K, the TBA becomes a transition between a superconducting ground 
state and a bipolaronic ground state. 

Let us emphasize that the physical consequences of this exact theory 
contradict some common assumptions concerning the effect of large 
electron-phonon coupling. The phenomenology of the bipolaronic and 
mixed polaroni~bipolaronic configurations described here, which can be 
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chaotic and have physically very long lifetime, proves that, for small t and 
fl, the electron-photon coupling cannot be reduced to an effective attractive 
electron-electron interaction. However, this approximation is often used 
in the literature. It is generally believed that the ground state is super- 
conducting (e.g., see ref. 37), with possibly bipolaronic fluctuations, which 
contradicts the fact that it is a quasistatic structure of bipolarons or 
polarons, as we proved. 

Alexandrov et a[. (23'24) discuss the possible existence of bipolaronic 
superconducting states. Their theory is based on an exact expansion, but at 
the lowest order only, with respect to t of a large class of models, including 
the fully quantum Holstein model. Then they map these models onto quan- 
tum spin models (the spins of their model correspond in fact to our 
pseudospin described here). The quantum lattice fluctuation generates a 
small spin quantum term corresponding to transverse coupling between the 
spins. However, the truncation of their expansion at first order in t 
corresponds to a truncation of their spin Hamiltonian to nearest neighbors. 
This approximation is drastic, since a 
ground states (except for the half-filled 
for t va 0. In particular, because of that, 
the well-known incommensurate CDW 

degeneracy is introduced for the 
case) which in fact does not exist 
their approximation cannot yield 
structures. Consequently, the role 

of the quantum terms in raising the degeneracy is overestimated and 
supposed to produce a superconducting state but in any case with a very 
low critical temperature. They essentially neglected the spatial extension of 
the bipolarons, which are not on-site, as we saw in Section 5.1. We totally 
disagree with their physical conclusion of the possible existence of 
bipolaronic superconductivity. Our studies prove in fact the physical 
existence of insulating bipolaronic states at 0 K when the criterion (118) is 
fulfilled. This is just the domain of parameters where their theory is 
supposed to apply. 

5.8. A Glance at Physical Appl icat ions.  The Chemist 's 
Approach- -B ipo la ron ic  Charge Density Waves 

Physicists are used to understanding the electrons in solids by starting 
from a band model. Chemists describe many real materials by well- 
localized chemical (covalent) bonds. In fact, a chemical bond turns out to 
be somewhat similar to the physical picture of a bipolaron. It is indeed a 
pair of electrons with opposite spins in the same eigenstate which bonds 
two atoms or, more generally, a cluster of atoms. The distribution of the 
atomic distance (geometry of the molecule) is a function of the spatial 
distribution of chemical bonds (electron-phonon coupling). Although the 
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chemist's approach seems to oppose to the physiscist's description which is 
based on band theory, it is well known that the chemist's approach is often 
efficient for predicting the structure not only of finite-size molecules but 
also of solids of some insulating materials. 

The concepts of bipolaron and polaron are in fact extensions of the 
concept of chemical bond. Our theory proves that in the large electron- 
phonon coupling regime and for the Holstein model, the chemist's descrip- 
tion is prevalent over the physicist's description in term of the standard 
band theory. It also shows that for smaller electron-phonon coupling, the 
bipolarons do not remain localized in real space on a few sites at a single 
chemical bond, but extend and diverge at the TBA. Then the system is 
better described by a band theory and we return to the physicist's 
description. 

Incidentally, even for systems as small as molecules with a few atoms, 
the existence of isomeric chemical compounds with a practically infinite 
lifetime (at room temperature) proves that quantum tunneling (quantum 
lattice fluctuations) is not sufficient for transforming a molecule into one 
of its isomers. Quantum tunneling does not transform a non-mirror- 
symmetric molecule into its mirror image (enanthiomers) with strictly the 
same energy. Nature thus confirms the prediction of the previous sub- 
section, that quantum lattice fluctuations can be neglected for many 
systems (except possibly for systems with very light atoms such as 
hydrogen). 

Although this paper is not the appropriate place for discussing in 
detail the applications of this work to real experiments, it is important to 
emphasize that the ideas developed here could provide a novel basis for 
understanding some phenomena existing in nature. The physical ideas 
developed here are not restricted to the adiabatic Holstein model (chosen 
for convenience), but are universal and could be extended to many other 
models. Let us also recall that the concepts of polaron and bipolaron 
presented here are different from the usual picture described in the 
literature (polaronic band). On the basis of approximate theories, it is 
generally considered that the polarons are quantum particles (fermions) 
and form a band. They can be viewed just as heavier electrons with an 
effective renormalized mass due the narrowing of the bare electronic 
bandwidth. The bipolarons are bound states of such polarons and are 
bosons. By contrast, our new versions for the concepts of bipolaron and 
polaron are intrinsically related to the concept of chaos. For a strong 
enough electron-phonon coupling, these particles behave as classical 
particles because the quantum lattice fluctuations are negligible. This new 
picture should be useful, in practice for the interpretation of real 
experiments. The application we have in mind mostly concerns charge 
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density wave systems 5 for the bipolaronic structures, but we guess that it 
also has potential applications to spin density waves and magnetic struc- 
tures (with mixed polaronic bipolaronic structures), although we have not 
yet explored this point. 

It appears that the bipolaronic description yields on many points 
physical predictions which are sharply different from those of the standard 
CDW theories and which are in better qualitative agreement with the 
observations. Although still unpublished, some of the ideas presented here 
were developed in ref. 25. 

5.9. Predict ions for  B ipolaronic  C D W s :  A Qual i ta t ive  Scenar io  

For this last section, we refer the reader to the abundant experimental 
literature on this topic and especially to review papers. There is wide 
variety of unusual phenomena in these systems which by far have not been 
globally interpreted. Some of the experimental observations are supposed 
to be due to the action of impurities (which indeed always exist in a real 
sample) on a standard sliding Peierls-Fr6hlich CDW, but there are many 
other observed features with no consistent interpretation. Considering the 
real CDWs as bipolaronic structures could open the way of both reinter- 
preting known experiments and interpreting unexplained experiments with 
the same unified interpretation. Let us sketch some of the qualitative 
characteristic properties of a bipolaronic CDW which result from our 
theory. 

a. Z e r o - D e g r e e  S t a t e .  When the electron-phonon coupling is 
large enough, the ground state in the absence of a magnetic field of 
a coupled electron-phonon system (here the adiabatic Holstein model) 
corresponds to a specific ordering of bipolarons which a priori is not 
known. It could be a simple commensurate structure, an incommensurate 
structure, or possibly something more complex, closer to a glass of 
bipolarons (that is, a weakly periodic structure(3~ The structure at 0 K 
could be also a metastable structure out of equilibrium, that is, a glass of 
bipolarons, which should be obtained by fast quenching of the system at 
low temperature. The disorder of the obtained structure should depend on 
the kinetics of the bipolarons and the quenching velocity. 

b. A Latt ice Gas M o d e l  at L o w  T e m p e r a t u r e .  When the ther- 
mal energy kt~ T is much lower than the phonon gap and the electronic gap 
energy, the system remains in a bipolaronic state. In that temperature 
regime, the roles of the phonons and of the purely electronic excitations in 
the thermodynamics are not essential and can be dropped. This system 

5 For review of CDWs see refs. 31-35. 
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essentially evolves by thermal hopping of the bipolarons. The relevant 
excitations at low temperature correspond to defects (vacancies and inter- 
stitials) in the bipolaronic ground state. The gap in energy for these defects 
may vanish for incommensurate structures or may be finite for commen- 
surate structures. A similar analysis has already been done for the one- 
dimensional FK model at low temperature. 

Consequently, the only relevant degrees of freedom of the system are 
the pseudospin configurations {~i} which characterize the bipolaron 
distribution. The total energy (15) of the corresponding bipolaronic 
configurations allows one to reduce formally the initial Hamiltonian to a 
pseudospin Hamiltonian (in other words, a lattice gas model). For example, 
for the Holstein model at the anti-integrable limit (k= oo or t = 0), this 
pseudospin Hamiltonian is trivial and corresponds to noninteracting 
pseudospins, since then the ground state is degenerate. For t ~ 0, it can be 
calculated explicitly at the lowest orders on a square lattice. (6> The expan- 
sion involves not only pair interactions between the pseudospins which 
decrease exponentially as a function of the distance, but also three-spin, 
four-spin, etc., interactions, which makes the Hamiltonian rather complex. 
In fact, these extra terms become important when the size of the bipolarons 
starts to diverge (approaching the TBA). Even when this Hamiltonian is 
truncated to pair interactions between the pseudospins, its ground state is 
not trivial except for the model in one dimension, which yields an 
incommensurate or commensurate structure with the expected Peierls wave 
vector at 2k F. 

c, Low-Temperature Behavior: Bipolaronic Glasses? The 
fact that a bipolaronic structure can be described by a pseudospin model 
(thus with discrete variables) has experimentally observable consequences 
for the behavior of the CDW structures at low temperature, which for 
some effects can be unambiguously distinguished from those of the 
standard theory for CDWs. These consequences concern, for example, 
the glassy behavior of the CDW structure and the thermal variation of the 
wave vector of the CDW and the intensity of harmonics of the diffraction 
peaks. 

Specific heat measurements at low temperature in CDW compounds 
reveal anomalies at low temperature which recall similar behavior observed 
in glasses. (48) Time-dependent heat diffusion experiments also reveal 
anomalies, with stretched exponentials as in many glasses. Conductivity 
experiments also exhibit hysteresis and memory effects. These experiments 
could be interpreted by the fact that the bipolaronic diffusion becomes 
negligible at low temperature and thus that the structure remains in 
metastable states. This metastability is intrinsic and not due to impurities. 
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d. W a v e - V e c t o r  V a r i a t i o n .  A significant variation of the wave 
vector as a function of temperature has been observed in all known CDWs. 
A recent interpretation (4~ based on the standard mean-field approximation 
has been recently proposed. This theory considers the effect of the band 
energy curvature (effective electronic mass). In this way some of the lattice 
effects are introduced in disguise. It is found that the variation of the wave 
vectors can be nonnegligible only in the case of a strong enough electron- 
phonon coupling, that is, in the case of a bipolaronic structure. Otherwise, 
a mean-field treatment of incommensurate lattice gas models (for a fixed 
band filling) yields a variation of the wave vector of the modulation. This 
variation (which is a devil's staircase) is small for extended bipolarons and 
becomes very large for small bipolarons. (41) 

e. H a r m o n i c s  S a t u r a t i o n  at  L o w  T e m p e r a t u r e .  However, 
the most suggestive feature showing that real CDWs are bipolaronic is 
given by accurate measurements of the diffraction peaks. This measurement 
has been recently done (up to order 4) in the real CDW system NbSe3 at 
low temperature. (39~ (Note that NbSe3 exhibits two CDWs with different 
modulation wave vectors. This observation concerns the first CDW which 
has the highest critical temperature.) It is essentially observed that the 
intensity of the harmonics of the CDW modulation saturates at 
temperatures which are inversely proportional to the order of the 
harmonics. These observed results sharply disagree with the prediction of 
the standard theory of CDWs. The bipolaronic interpretation is very 
simple, and is based on the fact that at low temperature the thermal 
fluctuations disappear. Then the occupation probability ( a i )  of any given 
site i necessarily saturates either to zero or to one, which is the pseudospin 
value at site i in the ground state (or in the metastable state). This 
phenomenon for the harmonic saturation is primarily a consequence of the 
existence of pseudospins and thus of a bipolaronic structure. 

In addition, we have some hope that a careful analysis of the complete 
data of the scattering experiments could yield the shape of the bipolarons 
associated with the first CDW in NbSe3, as shown Fig. 5. However, it is 
already clear by inspection of the existing data that the bipolarons of 
NbSe3 are not localized at single sites, but extend over several unit cells. 
This physical situation should be rather close to the TBA at which the size 
of the bipolaron becomes infinite. It is not unreasonable to consider that 
the superconducting transition which occurs in NbSe 3 under pressure (42,431 
is due to the crossing of the TBA, which eliminates the CDW lattice 
modulation by the quantum lattice fluctuations as suggested in the 
preceding subsection. Then, each CDW disappears and the system becomes 
a superconductor beyond a second-order transition under pressure. This 
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phenomenon occurs successively for both CDWs, but at different critical 
pressure. 

f. Violation of the BCS Relation between Electronic Gap 
and the Melting Temperature. While the temperature increases, any 
bipolaronic structure should melt at some critical temperature T,.. 

For the adiabatic Holstein model close to the anti-integrable limit, the 
interaction between nearest-neighbor pseudospins (6~ is 4T/k 2 =4Tt [with 
the initial energy units of model (1)]. The characteristic energy kBTc 
calculated within the standard mean-field approximation is at most around 
4T/k 2 (while the half electronic gap is A = Tk2). For quasi-one-dimensional 
CDWs and k large, we have �88 To) ~- A, which obviously violates the 
standard BCS relation 3.52kB Tc~ A. This result should not be surprising, 
since this BCS relation was established for weak electron-phonon coupling. 

For models with dispersion in the phonon branch, the ground state is 
no longer degenerate at the anti-integrable limit. Since the interaction 
between the pseudospins only depends on the phonon dispersion, for 
large electron-phonon coupling the critical temperature Tc tends to be 
independent of any electronic properties and thus of the electronic gap, 
which proves again that the BCS relation cannot be fulfilled at the anti- 
initegrable limit. The fact that in real CDWs the electronic gap is found 
two or three times larger (49) than the expected BCS value is a clear indica- 
tion that these systems are not in the weak coupling regime but could be 
in the bipolaronic regime. 

g. Order-Disorder and Displacive Bipolaronic Structures. 
Above the critical temperature, the states of the system are disordered 
bipolaronic structures which survive up to the (crossover) temperature Too 
where these bipolarons break up. Note that this region between Tc and Too 
corresponds to the region where experimentalists observe a "pseudogap" 
due the fact that the fluctuations corresponding to the CDW are still 
present since the bipolarons still exist for a reasonably long lifetime. There 
are two extreme regimes with of course a continuum of intermediate 
regimes. 

The first regime, which we call order-disorder, is obtained when the 
binding energy of a bipolaron is large (that is, close to the anti-integrable 
limit). Too is very large. The bipolaronic structure survives at all the 
temperatures which are physically accessible. The mobility of the 
bipolarons, which are thermally activated, increases with the temperature 
as well as the conductivity of the material. This system behaves as an 
insulator at all temperatures. There is almost no phonon softening due to 
the electron-phonon coupling. 
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The opposite regime, which we call displacive, is the situation where 
Too is close above T c. This situation is obtained close to the TBA, when the 
spatial extension of the bipolarons is rather large. The conductivity 
increases as a function of temperature up to Too. Above Too, the bipolarons 
break up into free electrons and the system returns to a metallic regime 
with a rather strong electron-phonon interaction. Then the conductivity 
decreases with temperature. That regime is also characterized by a sharp 
phonon softening above T c. However, we noted above that the stability of 
the structure against quantum lattice fluctuations requires that this 
softening not be total. A nonvanishing phonon gap should persist in the 
ordered CDW at lower temperature. 

h. N o n - O h m i c  C o n d u c t i v i t y  E x p e r i m e n t s .  For small electric 
field, the electronic transport properties of such systems are determined by 
the thermal diffusion of the bipolaron through the CDW, since the whole 
structure is pinned by the lattice and cannot move collectively. Except for 
NbSe3, which remains conducting at low temperature, because one subset 
of chains out of three remains metallic and does not develop a CDW at 
any temperature, all known CDWs are insulators at zero degrees. As for all 
phase transitions in nature, the ordered phase of a CDW has to be 
polydomain. These structure are indeed metastable, because of the lattice 
pinning. In each domain, the phase of the incommensurate CDW is 
constant. The phase defects are walls which separate these domains. 
Because of charge neutrality requirements, these walls have to be parallel 
to the wave-vector modulation, yielding a cylindrical geometry of domains. 
This is the same factor which forces the domain wall of a ferroelectric to 
be parallel to the electric polarization. 

As for a ferroelectric, when a certain coercive field is reached, the 
phase domain walls can move and in addition, new domains can nucleate. 
In that situation, it is well known that the pinning of the walls and the 
existence of nucleation centers are highly sensitive to the quality of the 
sample and more precisely to mesoscopic defects (but not of microscopic 
defects as suggested in many CDW interpretations). Unlike a ferroelectric, 
where the depolarizing current is transitory and ceases when the sample 
becomes monodomain, this electric current persists in a CDW because of 
the nucleation of new phase domain walls. This depolarizing current is the 
extra non-Ohmic current which is observed beyond a certain electric field 
threshold. As, for example, for the Barkhausen effect, which is the noise 
generated by wall propagations in a ferromagnet, this extra current exhibits 
a time dependence which could be more or less oscillatory or be a white 
noise, depending on the electric field, the sample quality, the geometry of 
the sample, etc. 
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Actual experiments (31 35) are in fact as compatible with this model as 
with the standard model of CDW pinning by microscopic impurities. In 
addition, and in agreement with experiments, this model expects that the 
mobility of the phase domain wall, which at a microscopic scale is due the 
thermally activated hopping of the bipolarons, is sharply temperature 
dependent. Thus, at low temperature the electric threshold should diverge. 
However, this variation could become more complicated (due to the 
thermal variation of the wave vector and commensurability effects). 

Unexpectedly, two pinning frequencies were observed experimentally 
in CDWs. In the standard model, such an interpretation is meaningless. 
Within our interpretation, this fact is obviously expected. One of the 
pinning frequencies is the frequency of the bipolarons pinned to the lattice. 
In order words, it is the nonvanishing gap of the phonon spectrum. This 
frequency is for example, at 100 GHz in blue bronze and at 30 GHz in 
TaS3. Neutron scattering experiments for blue bronze suggest that this 
high pinning frequency is indeed the gap of the phason branch. It is too 
high to correspond to the electric threshold, which is rather low (note 
larger than 1 V/cm). The second pinning frequency, which is measured in 
MHz, corresponds to the pinning frequencies of the phase domain walls, 
that is, to the real pinning of the CDW. 

The observation of a non-Ohmic extra current requires that the 
bipolaronic structure be sufficiently plastic, that is, relatively mobile 
bipolarons for having a mobile phase domain wall, or rather extended 
bipolarons. Thus, the observation of the non-Ohmic conductivity seems to 
be restricted to sufficiently displacive bipolaronic structures with soft 
modes and "quasiphasons," that is, with a small gap. In TTF-TCNQ, 
where the phonon softening is rather moderate, we probably are in an 
intermediate regime between the displacive and order-disorder regimes. 
Indeed, the observation of a non-Ohmic conductivity in that compound 
can be done only beyond a very large electric threshold. 

More details about this interpretation can be found in ref. 25. 

i. Behavior of CDWs under a Magnet ic  field. Field- Induced 
Trans i t ions .  First let us note the possible existence of magnetic 
susceptibility anomalies above To. When T> Too and when the electron- 
phonon coupling is large enough, the bipolarons of the CDW break up 
into polarons, giving an enhancement of the magnetic susceptibility. For 
the Holstein model at the anti-integrable limit t = 0, which reduces to a 
collection of independent one-site systems, this magnetic susceptibility can 
be easily exactly calculated. Indeed, this calculation confirms the existence 
of a sharp peak in the magnetic susceptibility corresponding to the cross- 
over temperature Too >> T~. For smaller values of the electron-phonon 
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coupling the bipolarons persist and there are arguments showing that the 
susceptibility peak at Tco smooths down. For larger temperatures, 
corresponding to the binding energy of the electron to a single polaron, the 
system returns to the standard behavior of a metal. Then one recovers the 
standard Pauli magnetic susceptibility of a metallic system. For inter- 
mediate values of k the system returns directly to the metallic regime above 
Too. Otherwise, it is reasonable to expect sharper anomalies if the real 
system involves direct electron-electgron interaction. By contrast, in the 
standard theory of CDWs the magnetic susceptibility should be very small 
for T< T~ and should directly become the Pauli susceptibility for T> To. 
But in fact many CDW systems show pronounced magnetic susceptibility 
anomalies above To. which have not been explained. 

Another intriguing phenomenon is the sharp dependence of the electric 
threshold field as a function of the magnetic field. (42~ Magnetic-field 
induced phase transitions can be also be expected naturally within a 
bipolaronic description since we proved above that the ground state of an 
electron phonon coupled system in a magnetic field could become a mixed 
polaronic bipolaronic structure. The critical magnetic field required for this 
transition, which exists in principle in the absence of direct electron- 
electron interaction, can be very much lowered when this interaction is 
present. Indeed, magnetoresistance experiments (44) foir NbSe3 suggested the 
existence of mixed charge and spin density waves, which could be very well 
interpreted as the mixed polaronic-bipolaronic states predicted here. 

In summary, we have established many rigorous results concerning the 
existence and the properties of chaotic bipolaronic structures, and also 
proved the existence of bipolaronic CDWs. The properties of these CDWs 
disagree on many points with those predicted by the standard scheme 
proposed in the literature. It is noted that a wide collection of experimental 
features which concern real CDWs can be better described with the basic 
assumption that real CDWs are bipolaronic structures. It is hoped that this 
novel approach will attract the interest of other theoreticians, since, as 
pointed by Monceau (35) in the conclusion of his recent review paper about 
CDWs and their standard interpretation, "The general properties of these 
states are more or less analyzed .... However, in spite of all these efforts, 
most of the fundamental questions remain unsolved"! 

A P P E N D I X A .  P O L Y N O M I A L  A P P R O X I M A T I O N  O F A S T E P  
F U N C T I O N  

In this Appendix, we calculate a polynomial approximation restricted 
to given intervals for two particular functions. Although there exists an 
abundant literature on the general theory of polynomial approximations of 
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functions, apart from existence theorems we have not found any construc- 
tive theorem which could help for finding polynomial approximations with 
precisely our two specific functions which is suitable for the proof of 
Proposition 2 in Appendix B. 

Let us consider the Heaviside function defined as 

Y(x) = 0 for x < 0 (Ala) 

Y(x) = 1 for x/> 0 (Alb) 

For two given a and b fulfilling 0 < a < b, we wish to find a sequence 
of polynomials Pn(x) of degree n such that the error on the two intervals 
E - b ,  - a ]  and Ea, b] is as small as possible and converge exponentially to 
zero as a function of n. We prove the following. 

P r o p o s i t i o n  A. 
degree n such that 

There exists a sequence of polynomials Pn(x) with 

with 

t , =  Sup I P , ( x ) -  Y(x)l < C ' e  ~n (A2a) 

C ' =  1 (A2b) 

a 2 

1 e 3 / 2  (A2c) 
K=~ b2 

Proof. For solving this problem, we propose (1) to search for an 
analytic function with an infinite radius of convergence which provides a 
good approximation of the Heaviside function for a<~lxl <~b, (2) to 
approximate this analytic function by its series truncated at order n, and 
(3) to bound the errors and then to optimize the parameters of the analytic 
function. 

1. A good analytic function for approximating Y(x) is the error 
function 

For x~>O 

1 (,~x 
I(~x) = ~ | e x p ( -  t 2) dt (A3a) 

o oo 

1 ~+~ 
Y(x) - I(Tx) = ~nn J~x exp( - t 2) dt (A3b) 
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We have for all x 

1 ~o exp [ - - (u2+v2) ]  dudv  [ Y ( x ) - I ( T x ) ] 2  rt Ixl ixl 

< - dO r e x p ( - r : )  dr - exp( - 7 2 x  2) 
7"C ~0 Ixl 4 

(A3c) 

which yields an upper bound of the error 

e x p ( -  i 2 2, 5 7 a )  [ Y ( x ) - I ( T x ) [  ~ for Jxl > a  (A4) 
2 

2. I(Tx) can be expanded as a series with an infinite radius of 
convergence, 

~,  x2n + 1 
I(yx) = ~ +  (-11"72"+1 (A5a) 

,=o xf~ (2n+ 1).n! 

We define the polynomial with degree 2 p -  1 

1 p 1 x2n + 1 
Qp(TX) = ~ + ~ ( - 1 )" (a5b)  

n=0 X/~ (2n + 1)-n[ 

For rxl < b, we have 

]ybl2n+t 
[ I ( , / x ) -  Qp(TX)[ <~ ,,Z=p ~ (2n + 1).n! 

17b12p+l ~ [7b12( n p) 

17b]2p + ~ < exp(72b 2) (A5c) 
,/7(2p+ 1).p! 

Using the inequality 

we have 

1 7b exp(72b2 ) 
1I(Tx) - Qp(yX)l <<. 2p + 1 x / -  s (A6) 
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3. By combination of (A5c) and (A4), we have for a ~< txl ~< b 

k Y(x)-Qp(Tx)4<~exp(-37 a i + _ _ _ _ ~ j  exp(72b 2) (A6a) 
2 2p+ 1 x/~ 

For each p, it is convenient to choose y=Tp=(C~p)l/2/b, where e is 
some constant, which yields 

1 - ~ P 2 b  5 2 - ~  I Y(x) - Qp(TpX)l ~ exp + exp[(c~ + 1 + In ~)p]  

(A6b) 

If we choose ~ in order that c~ + 1 + In c~ be negative, the right member 
of (A6b) will converge exponentially to zero when p goes to infinity. Since 
we do not need an optimized choice, we choose, for example, 

~ =  e 3/2 (A7a) 

which yields 

1( 
I Y ( X )  - -  Qp(,~pX)l ~-~ exp --pe -3/2-~ 

1 1 3/2 
(A7b) 

Since we have 0 < a < b, then it is straightforward to prove 

e 3/2 a 2 e 3/'2 ] 
- ~  b~ < - ~  < ~ - e-3/2 (AVc) 

Using this inequality and ~ < 1, we obtain from (A7b) 

I Y(x) - Qp(Tpx)l <~ exp(-2~p)  (A8a) 

with 

1 
3/2 ~_ (A8b) ~c=-e2 6 2 

Then, choosing the polynomials Pn(x) a s  P2p l(X)=P2p(X) = 
Qp(TpX), w e  obtain a sequence of polynomials Pn(x) of maximum degree n 
such that we have for rn defined by (A2a) 

rn < exp( - ~cn) (A8b) 
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Note that ~ -- 0 yields ~c = 0. Since the error a t  the discontinuity of the 
approximation of a step function by any continuous function is necessarily 
larger than or equal to the amplitude of this discontinuity, r, cannot 
converge to zero when 6 = 0. 

A P P E N D I X  B 

We calculate an upper bound for 

7tv' gt~'* gtv* ~v 
m - -n  --17 q ( B  1 ) rm, n;p.q = ~ z(Ev)[1 - z(Ev,)] (Ev,_Ev) 3 

v, v" 

with the condition (31) in Proposition 2. Z(X) is defined by (16). 

Step 1. According to Lemma 1, for z(Ev)= 1 in (B1), the eigen- 

value Ev given by Eq.(14b) belongs to the interval [ - 1 - ] ] J ] ] 2 t ,  
- l + [ ] J ] ] 2 t + z ] ,  while for 1 - z ( E v , ) = I ,  E~, belongs to the interval 

[ -Hz~H2t-v,  H~H2t]. Thus, for the values in (B1), we have 

1 -2r-2]]~H2t<~Er 1 + 211~112t (B2a) 

which is equivalent to 

(1 - z ) -  (E~,-  Eu) r + 211Jll2t 2 < 1  (B2b) 

Thus, for t ~  to = ( 1 -  2:)/(2 IIJJl2), the series 

(Ev,-  Ev) 3 (1 T) 3 [ E v , - E v - ( 1 - r ) ] / ( l - r ) + l  

- ( 1  -Z)3 i=0 i -~- "~'- 

is absolutely convergent, since 2 <  1. As shown in Appendix A, on the 
intervals 

a = � 8 9  IP2112t - r ~< lEv + !l 2 ~<�89 113112t--b (B4a) 

We can approximate 1 - a,, = z(E~) = Y(E~ + 1/2) by a polynomial P~(E~) 
with degree p with an error Rp(Ev) bounded as 

IRp(E~)I = IZ(Eu -- Pp(E~)! <~ exp(-~cp) (n4b) 

822,,67,,3-4-22 
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with 

We have 

1 3/2a2 1 (1-2H_3_l12t-2z.)2=7__ 
~ = ~ e  b 5 = 4  e 3/2 l+2l ]Al lRt  J 2 (B4c) 

1 7o 
0<~c~<tCo=~e 3/2=_2 (B4d) 

Step 2. 
into two parts as 

1 r I 

Tm,n;p,q- ( 1 -  r )  3 i=~O (i + 1)(i+ 2) 

• [1-Pd(p,q)-l-i(Ev)-Rd(p,q)1 i( Ev)] 
v,  v '  

x [ P ~ (  .... )-1 i(Eu')+Rd(m,~)-~-~(E~')] 

v' ~* v' v ( ( l -  r ) - ( E v ' -  Ev)) i 

x /  

1 v , ,  v ,  
- -  2_. (i+ 1)(i+2) ~g/m ~ n  U p  ~-/q 

"~- (1 .[.)3 i = r  

x ~ cr ( I _ ~ , ) ( ( 1 - ~ ) - ( E ~ ' - E ~ ) )  i 
v,v, 

with 

We use these expansions (B3a) and (B4b) to split Tm, n;p, q 

(BSa) 

r = Min(d(m,  n), d ( p ,  q)) (B5b) 

The terms in the sums (B5a) either depend on the variable Ev as a 
polynomial factor of degree smaller than or equal to d(p,  q ) - 1 ,  or 
depend on the variable E~, as a polynomial factor of degree smaller than 
or equal to d(m, n ) -  1, or depend on both variables in the same way, and 
involve, for example, the matrix elements 

i 
--s s v * v (A)p.q = • E v gtp gtq = 0 (B6a) 

v 

of the electronic operator ~ at some same power s < d(p,  q). Since on the 
lattice ~_, .~ only involves a nearest-neighbor transfer integral, 

mp, q = 0 for d ( p ,  q) > 1 (B6b) 
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implies 

- - s  (A)p,q = 0 for d(p ,  q) > s (B6c) 

Thus, the nonvanishing terms which are left in (B5a) are 

Tm, n;p,q-(l__v)3 ~ (i+1)(i+2)~ R~(p,q) l_i(Ev) Rd(m,n)_~ ~(E~,) 
i=O V,V' 

1 ~ (i+ 1)(i+2) 
+ (1 _ ~)-------~ =.  

7,~,.,pv ((1 - "r) - (E , / -  E~)) i 

v, v' 
(BT) 

Step 3. This sum can be easily bound by using (B3b), (B4b), and 
the fact that ~Up are normalized vectors, which implies 

Z l~pl �9 I ~q+ ~ 1 (B8a) 
v 

We obtain 

ITm,+~p, ql < ~ - -  
r - - I  

( l_z)3 ~ (i+ 1)(i+2)exp{-~c[-d(p, q)+ d(rn, n ) - -2 - -2 i ]} ) j  
i = 0  

1 ~ (i+ 1)(i+ 2)2i 
-~-(1 - -  "C )~ i= r 

exp {-~c[d(p, q) + d(m, n)] } e 2 r Z  ' (i+ - 1 )(i+ 2) [2 exp(2~) ] i 
( 1 - ~ ) 3  ,=o 

1 ~ (i+1)(i+2)2 i (B8b) 
"~" (1  ~ ) ~ i = r  

Although we lose on the quality of the bound, it is convenient for the 
sake of simplicity to reduce this complex form to a simpler one. With two 
derivatives with respect to x, the identity valid for 0 < x < 1 

1 - - X  n + 2  n + l  

1 - x ~ xi (B9a) 
i = 0  
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yields 
n I 

(i+ l)(i+ 2) xi 
i = 0  

1- (n+l ) (n+2)xn+2n(n+2)x"+l -n (n+l )x  ~+2 1 
= ( l _ x ) 3  ~< (1 _ x ) ~  (B9b) 

and 

( i+  1)(i+ 2)x i 
i = n  

X n 

(1 - - X )  3 [-(n+ 1)(n+2)-2n(n+2)x+n(n+ 1)x 2] 

X n 

~< (n + 1)(n + 2) (1 - x) -------~ (B9c) 

which combined with (B8b) implies 

[Tm.n;p. ql ~< e x p { - t c [ d ( p ,  q)+d(rn, n)]} exp(2K) 
(1 - "1~) 3 [-1 -- 2 exp(2K)] 3 

(r + 1 )(r + 2) •r 
+ (1-~)3 (1-,~)3 (m0) 

Step 4. The relation between the indices m, n, p, q of T m ,  n;p, q defined 
by (34b) implies 

I(d(p, q ) - d ( m ,  n)l ~<2 (Blla)  

and thus with definition (B5b), we have 

d(p, q)+d(m, n) ~< r + 2  (Bl lb)  

which implies 

(r + 1)(r + 2)2 r exp{K[d(p,  q) + d(m, n)] } 

<. (r + 1)(r + 2)(2eZ~)r e2~ (Bllc)  

We now use the hypothesis (31a), which is equivalent to 

2e 2• < 2e 2~~ = 2e ~~ < �89 (B12a) 

Then, the sequence ( r+  1)(r+2)(2e2~) r is monotone decreasing. Its 
maximum value, which is obtained for r = 0, is 2. Thus, (Bllc)  implies, for 
all r~>0, 

(r+l)(r+2)Uexp{K[d(p,q)+d(m,n)]}<2e 2~ (B12b) 
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Step 5. Inequality (B12b) combined with (B10) implies 

exp(2x) ( 1 2 ) 
ITm'n;P'ql ~(1---~--@ [1-2exp(2~c)]  34 (1 ~ 5  

x exp{ - ~cEd(p, q) + d(rn, n)] } 

exp(2K) 3 -exp - t o l d ( p ,  q)+d(m, n)]} 
~< (1 - z )  ~ [1 - ) .  exp(2tc)-I 3 { 

exp(7o) 3 
~< (1 - z) ~ [1 - 2 exp(7o)] 3 exp{ - ~:[d(p, q) + d(m,  n)] } 

(B13a) 

Using (B12a), (35a), and (31b), we find 

t Tm,  m p, qt 4 - -  
exp(7o) 3 exp{ --K[d(p,q)+d(m,n)]} 
( l - - z )  3 [1 --2 exp(7o)] 3 

425  exp{-~c[d (p ,  q)+d(m,n)]} QED (B13b) 

APPENDIXC. PROOF OF THEOREM 2 (MIXED POLARONIC- 
BIPOLARONIC STATES) 

It is not necessary to reproduce here the whole detailed proof of 
Theorem 2 since it is almost identical to that of Theorem 1. Instead, we 
follow that proof from the beginning to the end and only point out the 
variations which have to be made at some specific points for obtaining 
Theorem 2 with different bounds. 

For the proof of Theorem 2, we also search for a fixed point for the 
same operator S,({un})= {vn} defined in (18b), but it is now restricted to 
different domains E({~r~},z) defined as in (19) but with pseudospin 
configurations an = 0, 1/2, or 1. We now assume 

0 < z < ~ (Cla) 

so that for {un} eE({o-n}, z) we can write 

with 

"c 

un = - (1  - v)(a. + e ~ ) - ~  (Clb) 

t; 
j~l ~ < - -  (Clc) 

1 - - z  
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With almost the same proof, Lemma 1 is readily extended to a three- 
band case. We have the following result. 

k e m m a  C. For { u . } ~ E ( { a . } , ~ ) w i t h  {a.} e {0,1/2,1} ~ , a n d f o r  

1 - 4r 
' = (C2a) 

t < t ~  4 {iz~ll 2 

the eigenenergies can be written as 

T 
Ev= --(1 -'c)(av + ~ ) -  ~ (C2b) 

with 

I~1 ~ (C2c) 

and o-~ = 1 for the doubly occupied electronic states, o-~ = 1/2 for the singly 
occupied states, and o'v = 0 for the empty states. 

Since the bound in the lemma has been modified, Proposition 1, which 
makes use of it, also needs to be modified. We have, with the same 
notations, the following statement. 

P r o p o s i t i o n  121. For any pseudospin configuration {cr,} (with 
Y'.. ~. = P) and t ~< t~, the operator S, maps 8({an}, ~) into ~({~.}, ~"), 
where 

2(T 2 + t2Sa) 
~"-  (c3) 

(1 - 5 z  - 4t IlJtJ 2 ) ( 1  - r )  

Proof. The beginning of this proof is identical to that of Proposi- 
tion 1 up to formulas (24). The evaluation of I in (25a) is slightly different, 
since e, is bounded as in (Clc). Thus, (25c) becomes 

I <~ r 2 + t2S~ (C4a) 

Inequality (26a) is unchanged and since for ~ . = 0 ,  1/2, or 1 and 
a v = O, 1/2, or 1 we have the inequality 

f in  - -  O 'v )  2 ~ 1 .~- ~ IO'n - -  O'v[ (C4b) 

it imples, by using (C2c), 
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and 

This inequali ty implies both  

I~>  �89 - r ) ( 1  - 5r  - 4t IlXll 2) ~ (~rn - a , , )  I 7ff, I 2 
v 

= �89 - z)(1 - 5r - 4t 11311 ~)(% + v.) 

1~> �89 - v ) ( 1  - 5z  - 4 t  113112) ~ -  (an- a,,) I ~212 
v 

= -- �89 - z)(1 - 5z - 4t I[z~[I 2)(an + Vn) 

(C4c) 

(CSa) 

(CSb) 

and consequent ly  

If> �89 - z)(1 - 5z - 4t 113[l 2)Ion + v~] (C5c) 

Then  (C4a)  combined  with (C5c) yields { v . } e g ( { a n } , z " )  with r"  
given by (C3). Q E D  

For  cont inuing the p roof  in parallel with that  of Theo rem 1, we write 
the popula t ion  factor  X(x) given by (17) as the average of two charac-  
teristic functions, 

where 

and 

z(x) =1 ~ [zl(x) + z2(x)3 (C6a) 

Zl(X) ~'~ I for x < - 
3 (C6b) 

Z,(X) = 0 for x > - a  

1 
X 2 ( X )  ~ "  1 f o r  x < - -  a 

(C6c) 
1 Z 2 ( x ) = 0  for x > - a  

Then  the Jacobi  matr ix  .] of  the ope ra to r  St can be split into the sum 
of two matrices,  

'~V m '~ ~ ~ 
- -  z(E~) m ~l , l .  J,~ n /~u. ~ 7t v* CC 

v 

r ( l )  --(2) = ~,~,n + a .... (C7a)  
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with 

v 
(1)  _ Jm, n-- -- 2 Zl(Ev) ~Vm * ~[Jm ~u.  CC 

gtv*gF'~v '*  v 
= ~ zI (Ev)[1-zI (Ev, ) ]  --m m - - .  g*"+CC (C7b) 

v, ~' E~, - E~ 

g(2,) = _ 2 z2(E~,) ~n* OU. CC 
v 

v* v'  v* v 

= ~', ){2(E~)[1-z2(E~,)] gtm ~ u g t  g* t-CC (C7c) 
~, ~, Er - E~ 

instead of the terms (34c). When the conditions of application of lemma C 
hold, the arguments used for showing that (29c) remains well defined even 
in the case of the degeneracy of eigenenergies hold for proving that the 
coefficients of j(l) and j(2) are well defined. 

Then, similarly to Proposition 2, we can bound the coefficients of a 7~1) 
and 2 (2 ) .  

Proposition C2. Let us assume 

16t113112< ( 3 e - ~ ~  ~~ (C8a) 

with 7o = e-3/2/2 ~ 0.111565080, given by (31b), and set 

7, = ~o (1 - 4 z -  4tllJlJ2~ 2 

c ' =  2 

(C8b) 

(C9c) 

We have for all m and n in 

j(2) ~< C' e x p [ - 7 ' d ( m ,  n)] 

J(m2)~ ~< C' e x p [ - 7 ' d ( m ,  n)] 

LJm,.I <<. C'  exp[ --7'd(m, n)] 

(C10a) 

(ClOb) 

(ClOc) 

For a nonexponential lattice ~_ we have 

IlJll ~ <~ c '  N t ( r )  exp( -7 ' r )  = C'~p(7')< 
r 0 

(ClOd) 
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Proof. This proof is also based on polynomial approximations, as for 
Proposition 2. In order to fix the ideas, the proof of Proposition 2 is 
performed for the matrix a ~(1~, but it can be performed identically for the 
matrix j(2) 

Stop I. As in the first step of the proof of Proposition 2, we trans- 
form the coefficients of J2~ as in formulas (34). We obtain 

j ( l )  t 2 T (1) o T (~) - - T  (11 - T  (~ p,~)+CC (Cl la )  rn, n = 2 zJm, qAn,  p( . . . . . .  q'q- p,q . . . .  p . . . . . .  q re, q, 
P,q 

with 
gt ~' gtv* ~uv'* gt v 

~ (E . . . .  E,,) 3 
T~,,,;p,q~ z,(E~)[1--z,(E~,)] - - m p  ~ --q (Cl lb)  

v, v 

j(a) 8t2113112 (i) (Cl lc)  .... I~  < ~ T,,,~ 

Now we follow Appendix B for finding an upper bound T,!,~,)~ to the 
term I (,/ r~,.;~,ql in ( e l l a ) .  

Stop 2. As a consequence of Lemma C, when )~,(E~) = 1, the eigen- 

values E~, which appear in (C7b) belong to the interval [ - 1 - t l k J l [ 2 ,  

- 1  +tllz~[12+r]. When 1 --zI(Ev,)-- 1 ,  the eigenvalues E~, belong to the 

interval [ -  ~ ~-tllz~ll2 ~, tllJIIz]. Consequently, we have in (e8) 

O<�89 (C12a) 

which is equivalent to 
3 

I E v , - E ~ - z + ~ I  �88 l+4r+StlP3112 ) , '<1 (Cl2b) 
_3 z < 3 - -  - -  4 ~ -  ~ 3 --4z 

which replaces the inequalities (B2). Then, as in (B3), the denominator in 
( e l  lb) is replaced by the convergent expansion 

1 1 

(E~,-- E~) 3 [(Ev,--Ev--3+'c)+(3--1:)]  3 

1 ~ ( i+ l ) ( i+2) ( �88  i (C13) 

Step 3. As in (B4b), we approximate z,(Ev)= Y(E~ + 3) defined by 
(C6b) by a polynomial P,(Ev) the degree r of which is given by (B5b) and 
with an error Rr(Ev) bounded as exp(-K'r) .  Lemma C implies 

a' = �88 - tll3Hz-~<.lEv+3l~t[l~][2+ 3~=b' (C14a) 
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which yields, by Proposition A in Appendix A, 

[Zl(Ev)- P'(Ev)[ ~<exp(- ~:'r) 

with 

(C14b) 

to' 7~ 7~ 2 y' 
- 2  b ' 2 - 2  k 3 ~ t t ~  / = 2  (C14c) 

Step 4. Then a bound for T (1) can be obtained identically as --m,n p,q 
for [Tm.,;p,q[ in (B8b), 

1 r--1 
(1) ~ (i+ 1)(i+2) exp{-tc '[d(p,  q)+ d(m, n ) - 2 - 2 i ]  }~,i I rm,.; . ,ql  ,=o  

1 ~. (i+ 1)(i+ 2)2 'i (C15a) 
+ (�88 ,=r 

which implies by using the inequalities (B9) 

[ (1) .< 1 {exp(Z~c')exp{-~c'[d(p,q)+d(m,n)]} 
Tm, n;p,q[ -..v. ~ ~' [1 -- 2' exp(2tc')] 3 

( r+  1)(r + 2 )_- - -Z-~  ] ( 1  (C15b) 

Step 5. For sake of simplicity, we look for a looser bound with a 
simpler exponential form. The method which we used is similar to that 
used in step 4 of Appendix B, but has to be slightly modified, since the 
condition 2'e2K'< 1/3, which would correspond to (B12a), cannot be 
fulfilled. In fact, 2' defined in (C12b) and also 2'e 2~' are always larger than 
1/3. Instead of this condition, we assume the condition 

2'e 2~' < 2'e ~~ < �89 (C16a) 

[which is equivalent to (C8a)], so that the largest term in the sequence 
(r+l)(r+2)(2'eZ~') r is obtained for r = l  instead of r = 0  as in (B12b). 
Thus, we have for all r 

or  

+2) (2e  ) -.~62'e2~'<3 ( r+  1)(r , 2~' r<  

(r + 1)(r + 2)A'r exp{tc'[d( m, n) + d(p,  q)]} <3e 2K' 

By substitution of this inequality in (C15b), we obtain 

(C16b) 

(C16c) 

1 4e 7o [ (1) T,~.,;p.q[ ~< ,~ exp{ -~c'E d(m, n) + d(p,  q)] } "~)3 (1 2,e~0) 3 t~ 
(C17a) 
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instead of (B13b). Condition (C8a) [or  (C16a)] implies 

3e -e~ - 2 
(C17b 

< 4(2 + e-~~ 

which yields, when combined with (C17a), 

(1) ~<4[2+exp(  e x p { - # [ d ( m , n )  Tm, n;p,q[ --70)] 3 exp(7o ) + d (p ,  q)] } 

~< 109 exp{ -- x ' [ d ( m ,  n) + d (p ,  q)] } (C17c 

Using inequality (B1 la), we obtain that 

T(ml,~ = 109 exp(7o)exp[ - -7 'd (m,  n)3 (C17d 

is an upper bound for the terms T O~ in (Cl la) .  Using this bound - - m , n  p ,q  

(1) and T(2.)n.pq , we obtain that (C l l c )  yields (C10a). valid for Tm, n;p, q 
The same bound holds f o r ' J  (2~ and Jm,  in (CTa), which proves m , n  

Proposition C2. QED 

The proof of Theorem 2 follows the same steps as those of Theorem 1. 
The arguments for the first part of the proof apply identically in both 
theorems, although the bound t~ for Theorem 2 is different from t2. We 
check that the operator S, is still a uniform function of t when the 
pseudospins a ,  can take three values (0, 1/2, or 1) instead of two (0 or 1), 
by splitting the derivative Dvn/Ot into the sum of two terms as in (C7). Each 
of these terms has the form (41), where the pseudospins are given by 
fly = z I (Ev )  and a~ = x2(E~), respectively. It is proven as for Theorem 1 that 
each of these terms in a uniform function of t as well as their sum Ov,/Ot. 

The calculation of an explicit value for t~ is qualitatively identical to 
that of Theorem 1 but quantitatively different. Proposition 2 yields, if (CSa) 
is fulfilled, 

c '  (e~'+ l']d<< (63td)2 (e~~ + l )d 
11311 \e-TU]-_l J 

=(63td)2(eT~  3 + 8 d ,  )2 
\ J \l- ---8aij (c18) 

By using (C8a) and (C17b), we obtain 

3 + 8dt 
1 - 4~ -- 8dt 

12 + (3e -~~ - 2) - 4(2 + e-7~ 
~< 

4 - 16z - (3e -r~ - 2) + 4(2 + e=~O)r 

2 + e  -r~ 4 

< 2 - e-~~ + i3 - 4z)(2 - e -~0) 

1 4  - e - ~ ~  - 3 e - 2 7 ~  
< 

(2 - e-r~ - 3e-r~ 
(C19a) 
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Consequently, we have IIJII ~ < 1 when 

1 (e,O+l,]  a/2f(2_:e-~O)(5_3e ,o))d 
t<t'2=-~-d\---~o / \ 14 - - e -~~  -2~~ ] (C19b) 

Finally, in step 5, we prove that there exists an appropriate choice of 
z fulfilling 

1 - 8 t ~ .  d 
z < 4 (C20a) 

2(z 2 + 2t~ 2- d) 
< v (C20b) 

( 1 - 5 z - S t l . d ) ( 1 - z )  

3e-~~ 2 - 32t~- d 
z < (C20c) 

4(2 + e-t~ 

such that for t < t~, Lemma C and Proposition C1 and C2 hold. It is easy 
to check that, for example, z = 1/8 is a convenient choice. QED 

NOTE A D D E D  IN PROOF 

R. MacKay and C. Baesens (5~ recently improved the proof of 
Theorem 1. The existence proof of a fixed point for operator S, defined by 
(18) was obtained elegantly by using a resolvant operator integrated on a 
contour in the complex plane instead of complicated polynomial approxi- 
mants. The rigorous bound obtained for the existence of bipolaronic states 
is t < 0.089939 which is more than 20 times better than our bound given by 
(47a). 
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